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Abstract
Background: The increasing availability of time-series expression data opens up new possibilities to study
functional linkages of genes. Present methods used to infer functional linkages between genes from
expression data are mainly based on a point-to-point comparison. Change trends between consecutive
time points in time-series data have been so far not well explored.

Results: In this work we present a new method based on extracting main features of the change trend
and level of gene expression between consecutive time points. The method, termed as trend correlation
(TC), includes two major steps: 1, calculating a maximal local alignment of change trend score by dynamic
programming and a change trend correlation coefficient between the maximal matched change levels of
each gene pair; 2, inferring relationships of gene pairs based on two statistical extraction procedures. The
new method considers time shifts and inverted relationships in a similar way as the local clustering (LC)
method but the latter is merely based on a point-to-point comparison. The TC method is demonstrated
with data from yeast cell cycle and compared with the LC method and the widely used Pearson correlation
coefficient (PCC) based clustering method. The biological significance of the gene pairs is examined with
several large-scale yeast databases. Although the TC method predicts an overall lower number of gene
pairs than the other two methods at a same p-value threshold, the additional number of gene pairs inferred
by the TC method is considerable: e.g. 20.5% compared with the LC method and 49.6% with the PCC
method for a p-value threshold of 2.7E-3. Moreover, the percentage of the inferred gene pairs consistent
with databases by our method is generally higher than the LC method and similar to the PCC method. A
significant number of the gene pairs only inferred by the TC method are process-identity or function-
similarity pairs or have well-documented biological interactions, including 443 known protein interactions
and some known cell cycle related regulatory interactions. It should be emphasized that the overlapping
of gene pairs detected by the three methods is normally not very high, indicating a necessity of combining
the different methods in search of functional association of genes from time-series data. For a p-value
threshold of 1E-5 the percentage of process-identity and function-similarity gene pairs among the shared
part of the three methods reaches 60.2% and 55.6% respectively, building a good basis for further
experimental and functional study. Furthermore, the combined use of methods is important to infer more
complete regulatory circuits and network as exemplified in this study.

Conclusion: The TC method can significantly augment the current major methods to infer functional
linkages and biological network and is well suitable for exploring temporal relationships of gene expression
in time-series data.
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Background
Gene expression profiling has gained a tremendous
importance in functional genomic research. The presently
often used approach is to compare gene expression in dis-
crete time points resulting for example of different geno-
types or cell lines, morbid and healthy (control) objects or
under different physiological conditions. This type of
static gene expression profiling can already give useful
information on the patterns of significantly differentiated
expression of genes. However, in order to achieve a more
complete picture of significantly differentiated gene
expression, especially in order to capture and understand
the dynamics of the altered gene expression, it is desirable
to measure time-series gene expression [1].

Large efforts have been made in recent years to develop
bioinformatics methods to study gene expression patterns
[2-5] and/or to infer functional linkages and even regula-
tory network from microarray data [6-11]. For inference of
functional associations among genes two major classes of
methods are presently in use. One class of the methods is
based on graphical modeling, which include Bayesian net-
work [7] and Gaussian graphical model [12]. Recently,
dynamic Bayesian networks have been proposed to model
temporal gene expression and represent a promising
direction. However, most of the current work in this area
is limited to the analysis of a relatively small set of genes
due to computational complexity [9-11]. Another class of
methods infers functional association from large-scale
gene expression data by defining a statistic threshold for
the association. The main measure used for defining asso-
ciation is the Pearson correlation coefficient (PCC)
[6,13,14]. PCC is widely used for detecting co-expressed
genes from both static and time-series expression data.
However, several important issues are not specifically
addressed in PCC based methods when applied to time-
series expression data. A major issue is that the PCC clus-
tering method treats its input as a vector of independent
samples and hence doesn't take into account the temporal
relationship between consecutive time points. In addi-
tion, time-shifted and/or inverted expression of certain
gene pairs are not considered. Time-shifted and inverted
relationships are important features of gene expression
regulation [8]. For example, a gene may activate or inhibit
another gene or even several related genes downstream in
a regulatory pathway, resulting in time-delayed positive or
negative response in the transcription of the downstream
gene(s). To consider these phenomena, Qian et al. [8]
proposed a local clustering (LC) method. As demon-
strated with the expression profiling data of yeast cell cycle
this method can identify new, biologically relevant inter-
actions that could not be found by the conventional PCC
clustering method. However, the method of Qian et al. [8]
is principally still based on a point-to-point comparison
or local clustering of expression levels of genes although it

explicitly considers time-shifted and inverted gene expres-
sion profile. Kwon et al. [15] proposed an 'event-based'
edge detection method to consider the change trend of
gene expression between consecutive time points. By sim-
plifying a profile of time series into a sequence of decrease
or increase events this method is more robust to noises.
However, it does not fully make use of the information
contained in the gene expression levels in the original
data. Filkov et al. [16] proposed a similar method called
'edge detection'. Recently Balasubramaniyan et al. [17]
proposed a method to use Spearman rank correlation
based on the rank of expressional values. The rank of
expressional values is more insensitive to noses or outliers
but this method is still based on the point-to-point com-
parison per se.

To more comprehensively consider the temporal relation-
ships of gene expression in time-series microarray data we
propose here a new method that is based on extracting the
main features of the change trend and the change level of
gene expression between consecutive time points. We not
only consider the qualitative information (i.e. the change
trend) but also the quantitative information (the change
level) in the original data. We seek to make the methods
more noise-tolerant and at the same time to keep more
useful information in the expression values. This new
method, termed here as trend correlation (TC), is demon-
strated with the microarray data from cell cycle of yeast
[18]. The biological significance of functional associations
of inferred gene pairs is examined with several large-scale
yeast databases. We also extensively compare our method
with the LC method and the PCC based clustering method
of Eisen et al. [6]. It is shown that a significant number of
functionally associated gene pairs, which have well-docu-
mented biological interactions and relationships but can-
not be significantly detected by the LC and PCC methods,
can be inferred by the new method with high statistic sig-
nificance. The biological significance of the functional
association pairs inferred by our method is generally
higher than that of the LC method and similar to that of
the PCC clustering method which detects however only
simultaneous co-expression gene pairs. Furthermore, it is
shown that the overlapping of gene pairs detected by the
three methods is normally not very high, indicating a
necessity of combining the different methods in search of
functional association of genes from time-series microar-
ray data.

Principle and scheme of the proposed method
The principle of our method is to use information in the
change trend and the change level of gene expression
between consecutive time points for the inference of func-
tional linkages among genes. To consider not only the
positive correlation but also time-shifted and/or inverted
expression of certain gene pairs we employ a similar algo-
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rithm as the local sequence alignment [19] to calculate a
maximal local alignment of change trend (sc) between
each gene pair (Fig. 1). We noticed that a significant
number of gene pairs that have a same sc value may in fact
have a large difference in the change levels of their expres-
sion. The distinction of their change levels may lead to the
different degrees of similarity of functional association. To
solve this problem we make use of the quantitative infor-
mation in the change levels between consecutive time
points and calculate a correlation coefficient (cc) between
the maximal alignment.

The method consists of following major steps:

1. Generating a random dataset by shuffling the normal-
ized expression levels at different time points among each
gene expression profile in the original dataset;

2. Calculating a maximal local alignment of change trend
(sc) between each gene pair in the random dataset as illus-
trated in Fig. 1 for a simple case;

3. Calculating a correlation coefficient (cc) between the
maximal alignment for each gene pair in the random data-
set (Fig. 1);

4. Tabulating the frequency of sc (i.e. f(sc)) as function of
sc as shown in Fig. S1A [see Additional file 1]; followed by
tabulating the distribution of cc for gene pairs which have
the same sc;

5. Calculating the conventional p-values for the two
scores sc and cc (Psc(s >= sc), Pcc(c >= cc)) through integra-
tion of the frequency distributions (Fig. S1B);

6. Calculating sc and cc between each gene pair in the orig-
inal dataset;

Illustration of calculating the change trend score sc and the correlation coefficient cc of the match change trendFigure 1
Illustration of calculating the change trend score sc and the correlation coefficient cc of the match change trend. The two genes 
X and Y in this example have a positive relationship (here expression levels are not normalized). Only the change trend 
between time points 5 and 6 is different. The number of matched change after time shifts (by dynamic programming) is less 
than 7. Thus, the maximal match change trend score sc is 7 in this example with 9 time points. To calculate the correlation 
coefficient, we first extract the change levels of the matched change trends: 

 The change level between time points 5 and 6 is excluded 

because the change (inverted) trend is different from the main (positive) change trend. Using the above matched change levels 
we can obtain a correlation coefficient cc = 0.9597 according to Eq.1.
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A and B, number of gene pairs detected by the TC method in comparison to those of the LC method and the PCC method inferred from the yeast cell cycle dataset of Cho et al. [18] at two different p-value thresholdsFigure 2
A and B, number of gene pairs detected by the TC method in comparison to those of the LC method and the PCC method 
inferred from the yeast cell cycle dataset of Cho et al. [18] at two different p-value thresholds. The numbers in parentheses are 
the whole number of gene pairs detected by the corresponding method. The percentage of the additional number of gene pairs 
inferred only by the TC method in the text is calculated in a way exemplified in the following by a comparison with those 

resulted merely from the PCC method at the p-value threshold of . C and D, number of 

process-identity pairs among the detected pairs from the three methods; E and F, number of known protein interactions 
(including protein complexes) in collection dataset of protein interactions [21] among the inferred gene pairs from the three 
methods.
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7. Extraction of functional linkages using Procedure I pro-
posed: extract gene pairs with significantly high sc values
with a certain preset p-value. The correlation coefficient cc
is regarded as a second index when the gene pairs have the
same score sc;

8. Extraction of functional linkages using Procedure II:
extract gene pairs with statistically significantly high value
of combined scores of sc and cc.

The key steps mentioned above are described in the sec-
tion of Methods in more detail.  The main programs
TC_linkage_infer created in this work can be freely down-
loaded from our website   http://www.gbf.de/SystemsBi-
ology.

Results
Dataset of yeast cell-cycle
We tested our algorithm with the time series microarray
data (17 time points) generated by Cho et al. [18] for yeast
cell cycle with a whole genome yeast oligonucleotide chip
which included over 6000 ORFs. After removing all the
negative expression levels in the scaled measurements and
all the dubious and genes now deleted in the SGD data-
base [20], 5680 genes were included in our calculation.
We examined all the possible pairs among them. The val-
ues of the two scores sc and cc and the type of possible
relationship (simultaneous, time-shift or inverted) were
calculated and assigned for each gene pair.

Functional associations inferred by different methods
Figs. 2A and 2B show the number of gene pairs with pos-
sible functional association inferred from the yeast time-
series data by the TC method (including separate results of
the two extraction procedures), the PCC clustering
method and the LC method at two different cut-off p-val-
ues. The number of gene pairs extracted by Procedure II of
our method is generally higher than that from Procedure
I, especially at the lower p-value. Note that there is some
overlapping between these two extraction procedures so
that the total number of the gene pairs inferred is lower
than the sum of the two procedures. For comparing the TC
method with the other two methods the combined results
of the two extraction procedures are considered in the fol-
lowing if not otherwise mentioned. P-values of 2.7E-3 and
1E-5 in the TC method are equivalent to Pearson corre-
lated coefficients of 0.76 and 0.89 in the PCC clustering
method and scores of 13 [8] and 15.6 in the local cluster-
ing method respectively.

As can be clearly seen in Figs. 2A and 2B, the number of
inferred gene pairs depends much on the p-value in all the
three methods. In general, the TC method infers a signifi-
cantly lower number of gene pairs compared to the other
two methods. 39.8% and 44.3% of the pairs inferred by

the TC method are also found by the PCC and LC meth-
ods respectively. The common part of the three methods
is somewhat lower and accounts only 12.5% for the LC
method, 32.5% for the PCC method and 39.5% for the TC
method. The number of gene pairs merely inferred by the
TC method is considerable compared with those merely
from the LC method (20.5%) and the PCC clustering
method (49.6%). By decreasing the p-value threshold to
1E-5, the number of inferred functional pairs decreases
remarkably, especially for the TC and LC methods (Fig.
2B). However, the shared part of gene pairs predicted by
the TC method increases up to 65.4% and 77.7% com-
pared to the LC and PCC methods respectively, indicating
an increased reliability of the prediction (see below for
biological significance). The number of additional gene
pairs merely inferred by the TC method amounts 1442
and is still significant (Fig. 2B).

Biological significance of the gene pairs inferred
To assess the biological significance of the inferred func-
tional associations, the gene pairs are compared to known
biological processes and protein functions, known pro-
tein interactions and regulatory interactions in yeast
respectively. The results from the three methods are also
compared to each other. The results show that the TC
method can significantly enhance the LC and PCC meth-
ods to infer functional linkages and biological network,
and is well suited to explore temporal relationships of
gene expression in time-series data as detailed below.

Biological process and protein function-similarity gene 
pairs
In order to generally assess the biological significance of
the gene pairs inferred, we first use two databases of bio-
logical processes and protein functions classification
(supplementary Table S1) [see Additional file 1]. The S.
cerevisiae Genome Database (SGD) mainly utilizes the
Gene Ontology (GO) annotations [20]. We use 32 main
biological processes (i.e. conjugation). In this work, if two
genes in the pair inferred are involved in the same biolog-
ical process, we consider the gene pair as a process-iden-
tity one. 19.9% of the 108489 gene pairs inferred with the
TC method at a p-value threshold of 2.7E-3 (Fig. 2A) are
found to be process-identity pairs (Fig. 2C). The detailed
distribution of the process-identity pairs in each biologi-
cal process is listed in Table S3. A similar ratio (20.4%) of
process homology gene pairs is found for the 174768 gene
pairs inferred by the PCC method. Only 14.6% of the
342594 gene pairs inferred by the LC method with the
same p-value cutoff are process-identity pairs. If the results
inferred by procedure I and procedure II of the TC method
are separately considered, 22.9% of the 58376 gene pairs
detected by procedure I are process-identity pairs. The per-
centage (17.8%) of process-identity pairs among the
81271 gene pairs detected by procedure II is slightly lower
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than that by procedure I but still somewhat higher than
that (14.6%) of the LC method. The additional number
(Fig. 2C) of process-identity pairs inferred by the TC
method is considerable compared to those resulted only
from the LC method (17.8%) and the PCC method (32%)
respectively.

Among the 6490 gene pairs (Fig. 2B) predicted by the TC
method with a p-value threshold of 1E-5 there are 3138
(48.3%) process-identity pairs (Fig. 2D). Separately, only
32.6% of the gene pairs (1400) detected by procedure I
are process-identity pairs, in contrast to as high as 50.8%
for the gene pairs by procedure II. Considering the results
from p-value ≤ 2.7E-3 mentioned above no general con-
clusion can be drawn with regard to the question which
extraction procedure is more relevant. The percentage of
the process-identity pairs among the genes pairs resulted
from the LC method and the PCC method is 49% and
42% respectively. Thus, the lower p-value threshold can
significantly increase the portion of gene pairs involved in
the same biological processes in all the three methods. At
this low p-value the additional number (584, Fig. 2D) of
process-identity pairs merely inferred by the TC method
amounts to 12.9% of those only resulted from the LC
method. Compared with those resulted by the PCC
method this number declines to 286 (3.3%), suggesting
that the gene pairs with a higher ranked functional associ-
ation inferred by the TC method is more similar to those
resulted by the PCC method.

With the percentage of process-identity pairs in the range
of 14.6–20.4 at p-value ≤ 2.7E-3 the gene pairs inferred by
the three methods seem to have a relatively low biological
significance. If the common part of the gene pairs inferred
by all the three methods is considered (Fig. 2A), the per-
centage of process-identity pairs (Fig. 2C) increases to
34.8%, resulting in fairly good biological significance for
an in silico method of biological function inference. The
biological significance can be significantly increased by
lowering the p-value. At p-value ≤ 1E-5 the percentage of
process-identity pairs ranges from 42 to 49% for the three
methods. If the common part of the gene pairs inferred by
the three methods at this p-value is considered (Fig. 2B),
the percentage of process-identity pairs (Fig. 2D) increases
to 60.2%, resulting in a satisfactorily high biological sig-
nificance.

The second source used in this work for assessing biolog-
ical relevance of the gene pairs is the Munich Information
Center for Protein Sequences (MIPS, [22]) functional cat-
alogue database. For protein functional classification, the
MIPS database contains up to 6 different levels within the
hierarchy (i.e. metabolism in the first level). We use here
the second level of MIPS (i.e. respiration) as Qian et al. [8]
did. Altogether 158 function classes are used. It should be

mentioned that some functional classes merely belong to
protein cellular functions of plants and animals. Here if
two genes in the pair inferred have the same protein cellu-
lar function, we term the pair as a function-similarity pair.
The results of comparison among the three methods (Fig.
S2) are similar to those of process-identity pairs, and
detailed distribution of the function-similarity pairs in
each protein cellular function by the trend correlation
method is provided in Table S4 [see Additional file 1]. As
in the case of function-similarity pairs, if the common part
of the inferred gene pairs (Figs. S2A and S2B) from the
three methods is considered the percentage of function-
similarity pairs (Figs. S2A and S2B) increases to 31.7%
and 55.6% at the two p-values respectively, resulting in a
good basis for further experimental and functional studies
of the gene pairs inferred.

Comparison of inferred gene pairs with known protein 
interactions
To further assess the biological significance of the gene
pairs inferred and especially for comparing the three
methods we examine here the known protein-protein
interactions (including protein complexes) in current
databases of yeast among the gene pairs inferred from the
yeast cell cycle data by the different methods. Four data-
bases and published high quality datasets (Table S2) are
chosen for this purpose.

The protein-protein interactions collection of Yu et al [21]
integrates datasets from the databases of MIPS [22], the
Database of Interacting Proteins (DIP, [23]), the Biomo-
lecular Interaction Network Database (BIND, [24]) and
the experimental datasets of yeast two-hybrid [25,26] and
high-throughput mass spectrometry measurements
[27,28]. Many of the interactions are manually curated
beyond the experimentally derived protein-protein inter-
actions in the three databases mentioned above [21].

With a p-value threshold of 2.7E-3 the TC method detects
2701 gene pairs among the 65160 known protein interac-
tions. Separately, extraction procedure I detects 1152 pro-
tein interaction pairs, compared to 2542 pairs by
extraction procedure II. With the same p-value threshold
5187 and 4637 such gene pairs can be detected by the LC
method and the PCC method respectively. The relatively
low number of protein interactions among the gene pairs
inferred by the TC method is a consequence of the overall
lower number of gene pairs inferred by the TC method
(Fig. 2A). In fact, the percentage of protein interaction
pairs (Fig. 2E) in the overall gene pairs (Fig. 2A) inferred
by the TC method (2701/108489 = 2.49%) is comparable
to that of the PCC method (2.65%) but higher than that
of LC method (1.51%). Especially the extraction proce-
dure II of the TC method achieves a relatively higher per-
centage (2542/81271 = 3.13%). It should be mentioned
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A, Protein interactions (including protein complexes) only detected by the trend correlation method (443 interactions) [see Additional file 2] with a p-value threshold of 2.7E-3 which are known in the protein interactions collection dataset [21]Figure 3
A, Protein interactions (including protein complexes) only detected by the trend correlation method (443 interactions) [see 
Additional file 2] with a p-value threshold of 2.7E-3 which are known in the protein interactions collection dataset [21]. The 
network was visualized by Cytoscape   http://www.cytoscape.org/. B, the zooming-in part (red dashed rectangle in the Fig. A) 
of protein components of the large ribosomal subunit.
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that the low percentage in all these cases is not surprising
since only data from cell cycle is used in the inference and
the cell cycle represents only a part of cellular functions
involving protein-protein interactions in yeast. The results
presented in this section are thus more suitable for com-
paring the different methods rather than for quantitatively
assessing the biological significance of the gene pairs
inferred. Fig. 2E presents a comparison of the numbers of
unique and common pairs of protein-protein interactions
inferred by the three methods. The additional pairs (453–
479) merely (Fig. 3A) detected by the TC method are sig-
nificant compared with those resulted merely from the LC
method (15.4%) and the PCC method (19.8%). Remark-
ably, 58 protein-protein interactions among 42 (Fig. 3B)
protein components of the large ribosomal subunit of
yeast are only significantly detected by the TC method.
The fact that the 42 proteins connect with each other by
the detected interactions is consistent with the assembling
phenomena of components of the large ribosomal subu-
nit. Similarly, 22 interactions among 22 protein compo-
nents of the small ribosomal subunit of yeast are also only
significantly detected by the TC method. The 22 proteins
also connect with each other by the 22 interactions (Fig.
3A). Therefore, to have a more complete coverage of the
protein interactions it is obvious that the TC method
should be combined with the LC and PCC methods.

By loosing the p-value threshold from 2.7E-3 to 1.3E-2 the
TC method can detect significantly more pairs (4435) of
known protein-protein interactions (Fig. 2F). A p-value of
1.3E-2 in the TC method is equivalent to a Pearson corre-
lated coefficient of 0.6 in the PCC method and a score of
12 in the LC method [29]. With this p-value threshold,
7871 and 9325 pairs can be detected by the LC method
and the PCC respectively. The number of protein-protein
interactions additionally inferred by the TC method is
also considerable (Table 1). When the MIPS, DIP and
BIND updated databases are used individually for com-
parison similar results are obtained and summarized in

Table 1. Though the majority of the three databases is con-
sistent some differences exist among them. We chose
them to cover more known protein interactions and could
therefore obtain more reliable statistics results.

Comparison with known regulatory interactions
To examine the biological significance of functional asso-
ciations inferred by the different methods it is also inter-
esting to know if the gene pairs inferred cover some of the
known regulatory interactions, especially those involved
in the regulation of cell cycle. For this purpose, we use two
regulatory datasets (Table S2) as a comparison basis. We
first use the dataset including regulatory interactions
which are confirmed with a p-value threshold of 1e-3 by
genome wide location analysis (GWLA) [30]. With a p-
value threshold of 2.7E-3, only a relative low number of
the regulatory interactions is detected by the LC method
(127), the PCC method (47) and the TC (24) (Fig. S3A).
Regulatory interactions detected by the TC method are sig-
nificantly less than those by the other two methods. Nev-
ertheless, the additional number of regulatory
interactions detected by the TC method is considerable
compared with those only resulted from the LC method
(about 12%) and the PCC method (about 37.8%).

Similar results are obtained when the regulatory interac-
tion collection dataset of Luscombe et al. [31] is used (Fig.
S3B). The additional number of interactions predicted by
the TC method is 21 (11%) and 22 (about 32%) com-
pared with those resulted only from the LC method and
the PCC with a p-value threshold of 2.7E-3. With a p-
value threshold of 1.3E-2, the results of comparison are
similar to those at a p-value cutoff of 2.7E-3. Some of the
typical interactions between transcriptional regulators
and target genes which are detected by the TC method but
cannot be significantly detected by the LC and/or the PCC
method are summarized in Table S5.

Table 1: Results by the trend correlation (TC) method compared to those resulted from the local clustering method (LC) and PCC 
based clustering method in four protein interactions datasets (p-value threshold 2.7E-3 if not otherwise mentioned).

Collection dataset Collection Dataset with 
p-value ≤ 1.3E-2

MIPS DIP BIND

Compared to the LC method Only TC 453 1189 62 58 111
Both 2248 3246 84 64 91
Only LC 2939 4625 393 362 555
Additional by TC 15.4% 25.7% 15.8% 16.0% 20.0%

Compared to the PCC method Only TC 479 1009 66 60 112
Both 2222 3426 80 62 90
Only PCC 2415 5899 228 243 373
Additional by TC 19.8% 17.1% 28.9% 24.7% 30.0%
Page 8 of 15
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A detailed investigation of the results from a p-value
threshold of 2.7E-3 shows that the transcriptional factors
and/or the targeted genes of 29 [see Additional file 3]
among 34 known regulatory interactions inferred by the
TC method are involved in cell cycle regulation according
to Luscombe et al. [31]. Among the 29 interactions only
six interactions have both the activated regulator and the
differentially expressed targeted gene according to the
gene set of cell cycle regulation given in Luscombe et al.
[31]. The fact that 23 of the known interactions have
either an inactivated regulator or a non-differentially
expressed targeted gene in the cell cycle condition as
detected by the TC method with a high p-value cutoff

seems to indicate controversies in the designation of acti-
vated regulators and differentially expressed genes in the
cell cycle condition [31]. For example, the gene FKH2 is
annotated in Hollenhorst et al. [32] as a transcriptional
factor of the forkhead family that regulates the cell cycle
according to SGD. Furthermore, many interactions
known to involve FKH2 are detected by at least one of the
three methods. However, FKH2 is not regarded as a regu-
lator in the cell cycle condition by Luscombe et al. [31].

We further present two examples of predicted functional
linkages which have well-documented biological relation-
ships but cannot be significantly detected by the PCC
method and the LC method. The regulatory relationship
between RCS1 and GCN3 (Fig. 4A) was confirmed by
GWLA with a p-value of 9.2e-6. The Pearson correlation
coefficient for this gene pair is as low as 0.40 and the score
of the LC is only 6.88 (an example of detailed calculation
is provided in Table S6). We detect this gene pair with a
maximal matched inverted change trend sc of 15 after
RCS1 is shifted forward by one time point and obtain a cc
value of 0.70 between the matched change levels by the
TC method. Another example (Fig. 4B) is the proteins of
the genes SAC1 and HRP1 that form a protein complex
[21]. Though the score of the LC method is only 10.35
and the Pearson correlation coefficient is 0.44, we could
detect this gene pair with a maximal matched similar
change trend sc of 15 and obtained a cc value of 0.85 by
the TC method.

The inference of regulatory circuit and network
As shown above, functional linkages inferred by the indi-
vidual method do not give a complete picture. It is con-
ceivable that this would be especially the case for inferring
regulatory circuits and further for reconstructing regula-
tory network. Fig. 5 shows comparisons of inferred func-
tional relationships by the individual methods and their
combination which are mapped into regulatory circuits
(motifs) and networks based on the datasets [30,31]. In
consistence with the results of detected regulatory interac-
tions (Fig. S3) the LC method is superior to the other two
methods but still gives a very much incomplete picture.
The TC and PCC methods can augment the LC method
significantly. To infer more complete regulatory circuits
and network the three methods should be therefore com-
bined. This is exemplified with two relatively simple regu-
latory circuits. For the regulatory chain (Fig. 4C) from the
regulator TOS4 to the target gene CCT7 the negative rela-
tionship between TOS4 and SWI6 can only be detected by
the LC method with a shift of two-time-points. The inter-
action between SWI6 and ABF1 can be detected by all the
three methods. However, the interaction between ABF1
and CCT7 can only be detected by the TC method. The
three interactions can form one regulatory chain among
the complex combination of several motifs (Fig. 5).

A and B, examples of functional linkages detected only by the new method with a p-value cutoff of 2.7E-3Figure 4
A and B, examples of functional linkages detected only by the 
new method with a p-value cutoff of 2.7E-3. C, an example of 
more complete regulatory motifs detected by combining the 
three methods. Red, regulator; yellow, SAC1 in Fig.B; the leg-
end of linkages in Fig.C is same to that of Fig.5.
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Another example about a single input motif is explained
in Fig. S4 [see Additional file 1].

Discussion
From a practical point of view there are two key general
issues in the analysis of gene expression data. First, we
ought to infer functional relationships with high statistic
significance and as completely as possible. Second, the
functional relationships inferred should have a high bio-
logical significance. We proposed a new method in this
work and evaluated it mainly regarding these two aspects
with the microarray data of yeast cell cycle [18]. The new
method is also compared with the local clustering method
and the Pearson correlation coefficient based clustering
method. The number of functional gene pairs inferred
depends very much on the p-value threshold in all the
three methods (Fig. 2). With the two p-value cutoffs
(2.7E-3 and 1E-5) applied the TC method detects general
significantly lower number of gene pairs. Nevertheless, a
considerable number of gene pairs is only detected by the
TC method, ranging from 20.5% of the number merely
detected by the LC method to as high as 49.6% of that
merely detected by the PCC method at p-value ≤ 2.7E-3.
The ratio of additional gene pairs inferred by our method
remains similar (22%) at p-value ≤ 1E-5 compared with
the LC method but decreases to a relatively lower value

(6.7%) compared with the PCC method. This can be
explained by the fact that the statistically higher ranked
correlations have mostly simultaneous relationships that
can be well detected by all the three methods. Since p-
value ≤ 2.7E-3 represents a relatively high statistic signifi-
cance it can be concluded that the new method detects a
significantly high portion of additional functional rela-
tionships compared to the other two methods. Since the
shared part of gene pairs of the three methods at p-value
≤ 2.7E-3 is less than 50% (12.5–39.5% for the individual
method pair) it is also obvious that these methods should
be combined to have a more complete exploitation of
functional associations of genes buried in time-series
expression data.

Concerning the biological significance 19.9% and 48.3%
of the gene pairs (Figs. 2A and 2B) inferred by our method
(at p-value ≤ 2.7E-3 and 1E-5 respectively) are process-
identity ones (Figs. 2C and 2D) by comparing with the
known biological processes in the S. cerevisiae Genome
Database (SGD). This is compared with a process-identity
ratio in the range of 14.6–49% for the LC method and
20.4–42 % for the PCC method. Similar results are
obtained when the MIPS protein functional catalogue
database is used to assess the biological significance (Fig.
S2). These results suggest that the gene pairs detected by

Regulatory network of yeast resulted by combining the three methods with a p-value threshold of 2.7E-3 in the dataset of cell cycleFigure 5
Regulatory network of yeast resulted by combining the three methods with a p-value threshold of 2.7E-3 in the dataset of cell 
cycle. The network was layout by Cytoscape http://www.cytoscape.org/. For the interactions in this network [see Additional 
file 3].
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the three methods achieve fairly good and comparable
biological significance. As in the case of the total gene
pairs the additional gene pairs with biological significance
inferred merely by the trend correlation method is consid-
erable compared to the other two methods (Figs. 2 and
S2).

We also examined the gene pairs inferred by the three
methods with regard to known protein interactions (Figs.
2E and 2F and Table 1) and known regulatory interactions
(Fig. S3) in yeast. In general, the percentage of protein
interaction pairs in the overall gene pairs is low and com-
parable for all the methods (2.5% for our method (3.1%
for procedure II), 1.5% for the LC method and 2.7% for
the PCC method). This can be understood in view of the
fact that only cell cycle data under very specific conditions
are used here and the cell cycle represents only a small
portion of the cellular activities. Furthermore, only pro-
tein interaction pairs with significantly changed expres-
sion levels of all the involved partner proteins can be
theoretically detected. This applies also to the known reg-
ulatory interactions. It is shown that most of the detected
regulatory interactions are indeed involved in the cell
cycle regulation. Nevertheless, the number of protein and
regulatory interactions additionally inferred merely by the
trend correlation method is significant in all the cases. It
is obvious that more molecular interactions can be
obtained if more microarray datasets under different con-
ditions are considered [14].

Given the large number of functionally associated gene
pairs inferred by the different methods an important ques-
tion arises as to how we can find gene pairs which have
really a high biological significance and thus would be
best candidates for further experimental and functional
studies. To this end, the shared part of gene pairs inferred
by all the three methods is of particular interest, especially
at low p-values. It is found for example that the percentage
of process and function-similarity gene pairs of the shared
pairs at p-value ≤ 1E-5 can be as high as 60.2% and 55.6%,
building a very good basis for experimental study. The
common part of the TC and LC methods would be also of
particular interest for finding time-delayed and/or
inverted functional relationships which have received so
far less attention. It should be mentioned that all the func-
tional associated pairs predicted have a high probability
to be true and can thus serve as hypotheses for further
study in view of the high statistic significance criteria
applied. We would also like to emphasize that the com-
bined use of the different methods is not only useful for
finding more and highly possible potential candidates of
functional association but also very important to infer
more complete regulatory circuits and network as exem-
plified in this study (Figs. 4, 5 and 4).

Conclusion
The major difference between our method and the other
current methods is that the trend correlation method is
based on the main change trend and comprehensively
considers correlation coefficient between the main change
trend of two genes, whereas the other methods are mainly
based on the correlation of point-to-point expression lev-
els of two genes. Hence the trend correlation method can
reveal additional gene pairs with same function or in the
same biological process but yet not significantly co-
expressed. It therefore also can infer additional protein-
protein and regulatory network as demonstrated. As men-
tioned above, a combined use of different methods is
presently necessary for the analysis of time-series microar-
ray data. As clearly demonstrated in this work the pro-
posed new method can significantly augment the
currently major methods and is well suitable for exploring
temporal relationships of gene expression in time-series
data.

Methods
Maximal local alignment of expression change trend

The calculation of the maximal local alignment of expres-
sion change trend is similar to the algorithm of local
sequence alignment [19] and the local clustering method
of Qian et al. [8] for gene expression level. Different from
the local clustering method that merely compares the
expression levels at each time point, the change trends
between time points are used in our method. Considering
an expression profiling dataset of n time points the expres-
sion ratios at the n time points are first normalized in the
"z-score" fashion, resulting in an average expression ratio
of zero and a standard deviation of 1 for each gene. The
normalized expression level at time point i for gene X is
denoted as Xi. The change level between time points i and

i+1 for gene X is denoted as . The change trend for

 is denoted as ·  can have only one of

the three possible values 1, -1 and 0, corresponding to
increase, decrease and no change of gene expression
between time points i and i+1 respectively. A matrix of
possible alignment between the change trends for gene X
and gene Y can then be formed. In our algorithm two
matrices P and N are calculated in the following way:

if  = , Pi, j = Pi-1, j-1+1; else Pi, j = Pi-1, j-1

and

if  *  <0, Ni, j = Ni-1, j-1+1; else Ni, j = Ni-1, j-1

Xci
i+1

Xci
i+1 Xcti

i+1 Xcti
i+1

Xci
i+1 Yct j

j+1

Xci
i+1 Yct j

j+1
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The initial conditions are P0, j = 0 and Pi, 0 = 0, and the
same initial conditions are also applied to the matrix of N.
The purpose of calculating P and N is to find a local seg-
ment that has a maximal aggregated score, namely a max-
imal match of change trend between two expression
patterns. This can be accomplished by using standard
dynamic programming [19] as in the local clustering
method and results in an alignment of lc matched change
trend, where lc ≤ n-1 (altogether n-1 changes among n
time points).

Finally, an overall maximal value sc is found by compar-
ing the maximums for matrices P and N. The maximal
value is the matched change trend score sc for the two
expression patterns. A maximal value from the matrix P
means a positively correlated expression pattern of the
two genes, whereas a maximal value from the matrix N
indicates that these two patterns have an inverted relation-
ship. If the maximum is off-diagonal in its corresponding
matrix, then the two expression patterns have a time-
shifted relationship. When the number of matched
change trends between two genes is relatively small, it is
possible that several repeated maximal values exist with
different number of shifted-time-points. In this case, we
choose the maximal matched change trends with the
shortest time shift in the algorithm. Normally these gene
pairs are not regarded as inferred linkages because of the
small matched change trends based on the p-value thresh-
old.

Correlation coefficient between the maximal matched 
change trend of two genes

After obtaining the maximal matched change trend, we
need to calculate the correlation coefficient of the maxi-
mal matched change trend of the gene pair (Fig. 1). It is
calculated according to the following algorithm. Assum-
ing that the final matched change trend for gene X and

gene Y are  and  respectively in the maxi-

mal alignment, where xf and yf refer to the last time points
of genes X and Y in the maximal alignment and we assign

xf ≤ yf. We then give a new index for the time points of
match trends, where the matched change levels for genes
X and Y are now denoted as Xmc and Ymc in the following
algorithm:

Do while 2 ≤ i ≤ xf and yf - xf + 2 ≤ j ≤ yf

If sc from the matrix P and  =  then

Endif

If sc from the matrix N and  *  < 0 then

Endif

Loop

In the following equation k corresponds to p or n in the
above loop.

Where

cc(x, y) is the correlation coefficient between the maximal

matched change trends of genes X and Y.  and 
are the mean of the maximal matched change levels of

genes X and Y respectively σXmc and σYmc are the standard

deviation of the maximal matched change levels.

Significance statistics
In order to estimate the p-value for a given score a dataset
of random expression patterns was generated by shuffling
the normalized expression levels of the original data at
different time points. To assure the reliability of p-value
we generated the random expression patterns three times,
resulting in calculations for about 4.9e7 gene pairs. Using
the algorithm described above we calculated the maximal
matched change trend scores sc and the correlation coeffi-
cient cc between the maximal matched change trend for
each gene pair in the random expression dataset. We first
tabulated the frequency (f(sc)) of sc and then the distribu-
tion of cc for pairs which have the same sc value. Through
integration we could calculate the conventional p-value
for the two scores sc (Fig. S1B) and cc (Fig. S1C) (Psc(s >=
sc), Pcc(c >= cc)). They are defined as the probability of
obtaining a score (s or c) larger than or equivalent to sc or
cc from the random patterns. The higher the matched
change trend score is, the more likely the gene pair is cor-
related (positively or negatively). The higher the corre-
lated coefficient, the more likely the gene pairs are
correlated for a given value of sc.
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i
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j
−1

Xmc Xcp
p

i
i

− −=1 1

Ymc Ycp
p

j
j

− −=1 1

Xcti
i
−1 Yct j

j
−1

Xmc Xcn
n

i
i

− −=1 1

Ymc Ycn
n

j
j

− −=1 1

cc
sc

Xmc Xmc Ymc Ymc
x y

k
k

Xmc

k
k

Ymck sc
( , )

,

( )( ) .= ∗
− −− −

= +
∑1 1 1

2 1 σ σ
Eq 11

Xmc Ymc
Page 12 of 15
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:69 http://www.biomedcentral.com/1471-2105/7/69
Extraction procedure I
As shown in Fig. S1B the probability to achieve a high sc
score in the random dataset is very low. For example, the
p-value for gene pairs with sc ≥ 15 is as low as 1.7e-3 and
with sc ≥ 16 as low as 1.1e-4. Hence, if two genes in the
original expression data have a sc score ≥ 15 it is very likely
that these two genes have a functional association that
would be expected with a low probability by chance. For
a given significant p-value threshold such as 2.7E-3,
because the p-value of gene pairs with sc ≥ 15 is only 1.7e-

3 that is lower than the threshold, all the gene pairs with
sc ≥ 15 can be regarded as having functional relationships.
But Psc for gene pairs with sc ≥ 14 is about 1.27e-2 that is
higher than the threshold 2.7E-3, only parts of the gene
pairs with sc = 14 should be extracted. Among the gene
pairs with sc = 14 the pairs with a higher cc value (Fig.
S1C) should have a higher possibility to have a functional
association. Considering these facts and the distribution
frequency of sc we propose to define the following overall
p-value to better reflect the significance statistics for infer-
ring functional associations among genes:

P = Psc(sc + 1) + (Psc(sc) - Psc(sc + 1)) * Pcc or P = Psc(sc + 1)
+ f(sc) * Pcc 

where if sc is the highest possible score (here 16 in the
yeast cell cycle dataset with 17 time points), then Psc(sc +
1) = 0. This overall p-value combines the p-values for both
sc and cc and the distribution frequency of sc. If the sc and
cc values of a gene pair in original expression dataset
result in an overall p-value less than a certain threshold,
this gene pair is considered as functionally associated.
This extraction procedure is called here Procedure I.

Extraction procedure II
In applying extraction Procedure I we noticed that there
are many gene pairs the change trend score (sc) of which
is not very high, but the correlation coefficient between
the maximal change levels of which is significantly high.
These gene pairs will not be extracted according to Proce-
dure I because of the relatively high Psc values at low sc val-
ues (Fig. S1B). However, they may in fact also have a high
possibility of functional association since the main
change levels are correlated well. The difference of some
of the change trends from the main trend between the two
genes may be caused by the involvement of multi-regula-
tors in some time regions or by measurement errors and
expression noises. For these reasons, we propose a second
procedure (Procedure II) to extract gene pairs with possi-
ble functional relationships. In Procedure II, if the corre-
lation coefficient cc is not considered, the likelihood of
functional association of all the pairs increases with
increasing sc if sc is higher than or equal to a characteristic
score scm. This characteristic score scm is defined as the sc
that has the highest frequency in the random dataset (Fig.

S1A, here scm 10). If sc is smaller than scm, the frequency
of pairs with sc reduces along with the decrease of sc, as
does also the possibility for a functional association of the
gene pair. Because the possibility for functional associa-
tion should have a reverse relationship with the frequency
of the corresponding sc, one should not consider gene
pairs with sc smaller than scm. We therefore propose to
extract gene pairs through the formulas:

P-value of cc cutoff for each sc:

Where 

scm, sc with the highest frequency.

scmax, the maximal possible sc score in the time series
dataset

m, the number between scm and scmax

p, the given significant p-value threshold

f, the p-value threshold for each sc (between scm and
scmax)

f(sci), the frequency of gene pairs with sci

If the p-value of cc from a gene pair with sci in the original
expression dataset as determined in Fig. S1C is less than
the corresponding Pcc(i), this gene pair is considered as
functionally associated in the extraction procedure II.
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