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ABSTRACT
Motivation: High-throughput technologies have facilitated the
acquisition of large genomics and proteomics datasets. How-
ever, these data provide snapshots of cellular behavior, rather
than help us reveal causal relations. Here, we propose how
these technologies can be utilized to infer the topology and
strengths of connections among genes, proteins and meta-
bolites by monitoring time-dependent responses of cellular
networks to experimental interventions.
Results: We demonstrate that all connections leading to a
given network node, e.g. to a particular gene, can be deduced
from responses to perturbations none of which directly influ-
ences that node, e.g. using strains with knock-outs to other
genes. To infer all interactions from stationary data, each
node should be perturbed separately or in combination with
other nodes. Monitoring time series provides richer informa-
tion and does not require perturbations to all nodes. Overall,
the methods we propose are capable of deducing and quan-
tifying functional interactions within and across cellular gene,
signaling and metabolic networks.
Contact: boris.kholodenko@jefferson.edu
Supplementary Information: Supplementary material is
available at http://www.dbi.tju.edu/bioinformatics2004.pdf

INTRODUCTION
Remarkable progress in genetics and molecular biology has
permitted the sequencing of the genomes of a number of
species and the determination of a plethora of protein and
lipid components of intracellular signaling networks (Li et al.,
2002). High-throughput technologies are capable of monitor-
ing the expression levels of large gene sets and the activity
states of signaling proteins giving us snapshots of transcrip-
tional and signaling behavior of living cells. However, the
web of regulatory interactions among components of cellu-
lar networks remains largely unknown at the present time.

∗To whom correspondence should be addressed.

For instance, to relate genes to one another, current tech-
niques use clustering algorithms, which group genes that
appear to be coherently activated or inactivated (Claverie,
1999; Niehrs and Pollet, 1999). Genes with similar expres-
sion patterns can be placed together into a cluster, yet the
functional interactions between these and other genes are
unknown. Another example comes from the biology of sig-
naling networks. Although the basic architecture of mitogen-
activated protein kinase (MAPK) cascades has been worked
out, the complete pattern of feedback regulatory loops and
cross-talk between various MAPK pathways and other sig-
naling systems remain elusive (Bagowski and Ferrell, 2001;
Ferrell and Machleder, 1998; Langlois et al., 1995; Yu et al.,
2002).

There is an intrinsic difficulty in capturing network interact-
ions using traditional genetic experiments or pharmacological
interventions. Any perturbation to a particular gene or a sig-
naling component rapidly propagates through a network. In
fact, it is practically impossible to carry out an experiment
designed to observe how a change in one node directly affects
another node, because interconnections will cause widespread
(global) changes in a network. Following experimental per-
turbations to intact cells, only global responses of an entire
network can be assessed. The question is then how to use
the observed global changes to derive interactions between
individual nodes.

This problem has generated an effort by many research
groups whose goal is to infer mechanistic relationships under-
lying the observed behavior of complex molecular networks.
A series of studies was concerned with the determination
of reaction mechanisms and the deduction of biochemical
pathways from measurements of the time-course of species
concentrations (Arkin and Ross, 1995; Arkin et al., 1997;
Chevalier et al., 1993; Samoilov et al., 2001; Tyson, 1975;
Vance et al., 2002). Boolean networks, genetic algorithms,
dynamic simulations and Bayesian models have been applied
to infer the gene circuitry (Bhan et al., 2002; D’Haeseleer
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et al., 2000; Gat-Viks and Shamir, 2003; Husmeier, 2003;
Ideker et al., 2000; Jayaraman et al., 2000; Repsilber et al.,
2002; Tegner et al., 2003; Wahde and Hertz, 2000; Wiggins
and Nemenman, 2003; Yeung et al., 2002). Metabolic Control
Analysis (MCA) demonstrated that measurements of sensit-
ivities of the stationary fluxes and concentrations to changes
in each enzyme activity (the so-called control coefficients)
allow for determining interactions between metabolites and
enzymes (in terms of the so-called elasticity coefficients)
(Cascante et al., 1989; Kholodenko and Westerhoff, 1995;
Westerhoff et al., 1994). However, an implicit assumption
of the MCA approach is that the pathway stoichiometry is
known (Schuster et al., 2000), which is not the case for
signaling and gene networks. de la Fuente et al. (2002)
advanced steady-state MCA techniques to reconstruct gene
networks. At the same time, this technique imposed restric-
tions on the network architecture, disallowing each net-
work node to be generated and consumed by multiple pro-
cesses, and cannot be applied to signaling and metabolic
networks.

A more general strategy, capable of inferring the archi-
tecture of signaling and gene networks and allowing the
employment of a modular framework, was recently repor-
ted (Kholodenko et al., 2002) [the methods proposed by
de la Fuente et al. (2002) and Kholodenko et al. (2002)
were reviewed by Stark et al. (2003)]. Yet, both approaches
dealt only with steady-state behavior and implied that net-
work nodes are connected through regulatory interactions that
exclude mass flow. Thus, the tools developed so far have
limited applications to in vivo systems, particularly when
a biological process is intrinsically time dependent, such
as the cell cycle, or includes both information feedbacks
and mass flow connections through biochemical conversions
(Kholodenko et al., 1999; Tyson et al., 2001). In addition,
many previous methods required experimental interventions
to be absolutely specific, influencing one node at a time,
whereas more often experimental interference simultaneously
affects several nodes.

The present paper develops powerful quantitative tech-
niques to unravel functional interactions between genes,
transcription factors and metabolites from time series data on
cellular responses to perturbations. Compared to stationary
data, time series offer particularly rich opportunities for
understanding the dynamics of biological processes and
may help to deal with the problem of noise. We demon-
strate that monitoring time-dependent responses enables
the determination of causal relationships even when not
all of the network nodes can be perturbed. Avoiding the
nodes that do not permit direct experimental interven-
tions should be accompanied by the application of two
or more independent perturbations to other nodes. Our
strategy is illustrated and tested in silico using computer-
generated responses corresponding to realistic experimental
protocols.

SYSTEM AND METHODS
Quantifying direct connections between network
nodes
A conceptual framework has been developed by us to quantify
molecular interactions in cellular networks (Brown et al.,
1997; Bruggeman et al., 2002; Kholodenko et al., 1997b). A
basic concept is to analyze the direct effect of a small change
in one network node on the activity of another node, while
keeping all remaining nodes (variables) ‘frozen’. Here, these
ideas are applied to reconstructing cellular networks from
time-series of gene expression, signaling and metabolite data.

The dynamic behavior of a network is often described by a
set of differential equations,

dx/dt = f (x, p), x = (x1, . . . , xn), p = (p1, . . . , pm),
(1)

where a single state variable xi is assigned to each network
node, representing its concentration or activity level, and the
corresponding function fi describes how the rate of change
of xi depends on all other elements of the network. The para-
meters (p) represent any external or internal condition main-
tained constant, e.g. external concentrations, rate constants,
pH, temperature. If all molecular interactions were identified
by a mechanistic (‘bottom-up’) approach, we would be able
to reconstruct the functions fi in terms of the so-called chem-
ical kinetic equations, provided all forward and backward rate
constants were known (Moehren et al., 2002; Schoeberl et al.,
2002; Tyson et al., 1996). In practice, our knowledge of both
network interactions and rate constants is far from complete,
and here we develop a ‘top-down’ approach to estimate the
derivatives ∂fi/∂xj , which precisely describe the influence
of each variable xj upon the rate (fi) of change of every other
variable xi . These derivatives form the Jacobian matrix, F,
which is well known in mathematics and engineering,

F = (∂f /∂x).

If an entry Fij of the matrix F is zero at any time, component
xj has no direct effect on component xi . In this case, there is no
edge from node j to node i at the connection graph associated
with the network. For a non-zero element Fij , node j connects
to node i at the connection graph (Fig. 1). This interaction has
both direction and sign. Node j affects node i, but not vice
versa if Fji = 0. In fact, a gene (xj ) may influence another
gene (xi), whereas (xi) may have no influence on (xj ). If
Fji > 0, node j activates node i by enhancing the net rate of
xi production, and if Fji < 0, node j inhibits node i. The F ’s
values depend on a particular state (x) of the system at a given
time, and specify the dynamics of the positive and negative
interaction strengths between network nodes.

Our goal is to find these interaction strengths (given by the
Jacobian matrix F) from experimental time series obtained
by monitoring network dynamic responses. Biochemistry has
a long history of exploring the stationary behavior of cel-
lular pathways. Steady-state kinetic studies have provided
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Fig. 1. Network interaction map. Connections leading to node i of
the network correspond to non-zero elements Fij of the ith row of
the Jacobian matrix. These connections are shown in bold. The Fij

value quantifies the interaction strength, indicating how the rate of
change in the activity of node i depends on node j .

pertinent information on pathway regulation and protein and
metabolite interactions (Edwards et al., 2001; Kholodenko
and Westerhoff, 1995). At the same time, measurements of
system variables at steady states cannot aid in determining
the elements Fij , which describe local interactions. Indeed,
the multiplication of functions fi in Equation (1) by any con-
stant factor does not affect the steady-state behavior, whereas
it changes the Jacobian matrix F. Experimental data on sta-
tionary responses to perturbations can only determine the F s
up to arbitrary scaling factors. For instance, it is conveni-
ent to divide Fij by the negative diagonal elements −Fii .
The resulting dimensionless coefficients, rij = −Fij /Fii ,
are referred to as the connection coefficients (Kholodenko
et al., 2002). When stable elements are interconnected into
a network (Fii < 0), rij and Fij (i �= j) have the same
sign, which is plus or minus depending on whether network
node j activates or inhibits node i. In biological terms, the
connection coefficient rij tells us how much xi will change
in response to a causative change in xj , when all other net-
work nodes are kept constant, while node i is relaxing to
its new steady state (meaning a conceptual ‘isolation’ of
node i from other network interactions while characteriz-
ing the direct influence of xj ). The ratio of these changes
(∂xi/∂xj ) is evaluated from the steady-state condition for
node i, fi(x1, . . . , xi , . . . , xj , . . . , xn, p) = 0, considered at
constant values of xk for k �= i, j . The differentiation with
respect to xj gives ∂xi/∂xj = −(∂fi/∂xj )/(∂fi/∂xi) =
−Fij /Fii = rij , i �= j . Therefore, in the limit of infinites-
imal changes, the ratio �xi/�xj equals rij and quantifies the
direct impact of node j on node i at steady states. Previously,

we demonstrated how the connection coefficients rij can be
inferred from steady-state measurements (Kholodenko et al.,
2002). Here, we develop a technique allowing for determin-
ation of the dynamics of gene interactions described by the
F s from time-dependent network responses to experimental
interventions (Kholodenko and Sontag, 2002). The inferred
interaction dynamics offers a more valuable and complete
description of a cellular network than the less informative
steady-state data.

RESULTS
Network reconstruction from time series data does
not require perturbations to all nodes
A key issue is to develop an experimental protocol capable
of collecting all necessary data required to determine the net-
work architecture. A priori, it is not obvious what kind of
perturbations should be applied and how many experiments
should be carried out to infer all network connections. The
key to our method and a distinguishing feature from other net-
work identification approaches is the following experimental
design. To determine connections leading to each compon-
ent xi , a set of experimental interventions that do not directly
influence xi is selected. Each of these perturbations may dir-
ectly affect one or several nodes different from xi . Formally,
for each xi(i = 1, . . . , n), we choose a subset P i of para-
meters pj known to have the property that the function fi in
Equation (1) does not depend upon pj ,

∂fi/∂pj (x, p) = 0, pj ∈ P i . (2)

This prior information about the system is far less restrictive
than it may first appear. Indeed, it is usually the case that
biological information is available, for instance, telling us
that a certain protein has no direct influence on an unrelated
gene or biochemical interaction, or a certain inhibitor of a
membrane kinase has no direct influence on a cytoplasmic
phosphatase, and so on.

For each perturbation, we will measure the original and
perturbed time series (called trajectories) describing the time
dependence of network variables (e.g. the gene activities
and the functional states of proteins). These trajectories are
the solutions to Equation (1) corresponding to parameter
values pj and pj + �pj , respectively, and to the same
initial condition x0 (unless a perturbation is a change in
the initial condition). The time-dependent response Rij (t) of
each network variable xi to a perturbation of pj is defined
as the parameter sensitivity of the solution xi(t , x0, p) to
Equation (1):

Rij (t) = ∂xi(t , x
0, p)/∂pj

= lim
�pj →0

(
xi(t , pj + �pj) − xi(t , pj )

�pj

)
,

i = 1, . . . , n. (3)
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These sensitivities are computed using the variational system
along the corresponding trajectory and are routinely employed
in differential equation theory and systems analysis for para-
meter optimization and identification of dynamical systems
(e.g. Bryson and Ho, 1969; Lee and Markus, 1968; McBride
and Narendra, 1965; Saltelli et al., 2000; Sontag, 1993). They
have been used before in the context of metabolic networks
(see Ingalls and Sauro, 2003; Kholodenko et al., 1997a).

Our objective is to determine dynamic connections, given by
the Jacobian elements Fij (t) (Fig. 1), from the experimental
time series that evaluate global response coefficients Rij (t).
We will also need the second-order sensitivities, ρij (t), which
can be estimated from the measurements of the responses
Rij (t) at two successive time points t and t + �t ,

ρij (t) = ∂2xi(t , x
0, p)/∂pj ∂t = ∂Rij (t)/∂t

≈ [Rij (t + �t) − Rij (t)]/�t . (4)

With the subset P i of parameters pj that do not directly
affect the rate of change fi(x, p) of node i [Equation (2)],
we associate the matrix R(t , P i ) composed of the measured
time-dependent responses, Rkj (t). Each j th column of the
response matrix R(t , P i ) corresponds to a single experiment,
in which the parameter pj is perturbed and the time-course
of the response of each network node xk to a change in pj is
evaluated (see Experimental design). Therefore, the matrix R
has n rows and as many columns as selected parameters pj

that immediately influence either a single node different from
xi , or any combination of such nodes. For each perturbation
experiment (pj ), the second-order sensitivity ρij (t) is evalu-
ated from time series for node xi . By using the matrix R and
the ρij (t) values, the problem that we posed can be solved as
follows.

The dynamic behavior of node i is described by the solution
xi(t , x0, p) to Equation (1),

dxi(t , x
0, p)/dt = fi(x1, . . . , xi , . . . , xj , . . . , xn, p).

Taking the derivatives on both sides with respect to pj and
using Equations (2)–(4), we find that the unknown elements
of the ith row (Fi1, . . . , Fin) of the Jacobian matrix F satisfy
the following system of linear equations:

ρij (t) =
n∑

k=1

Rkj (t) · Fik(t), pj ∈ Pi . (5)

This equation gives us the answer we were looking for: the
n Jacobian entries, Fik , quantifying the influence of every
node k on node i (Fig. 1) can be determined from the meas-
ured responses, Rkj (t) and ρij (t), to perturbations that do not
directly affect node i, provided that the rank of the matrix
R(t , Pi) equals n. Importantly, to deduce dynamic connec-
tions leading to node i, the second-order sensitivities ρij

should be measured only for component xi , whereas for all

other components xk the first-order sensitivities Rkj (t) should
be determined. Supplementary Proof 1 demonstrates that for
any n independent perturbations, the rank of the response mat-
rix R(t , P i ) generically equals n at any given time. Moreover,
this rank generically equals n even when only a single network
node is directly affected by n experimental interventions, each
of which changes an independent parameter influencing that
particular node. For instance, a purely uncompetitive inhib-
itor can change the Vmax of a Michaelis–Menten reaction,
whereas the Km can be affected by a competitive inhibitor,
and time-dependent responses to both perturbations can be
used to unravel the network architecture. Interestingly, one
of the perturbations could be a change in the initial condition
(e.g. the protein abundance). We conclude that estimations
of the time-varying sensitivity coefficients allow us to com-
pletely infer and quantify the network connections, even if
experimental interventions can directly perturb only selected
network components, the number of which is less than n.

Avoiding derivatives Importantly, by employing genetic or
pharmacological tools to perturb cells, one does not need
to measure the sizes of the resulting parameter changes
(Kholodenko et al., 2002). In fact, such measurements would
be difficult if not impossible to make in vivo. Instead of the
parameter sensitivities defined in terms of derivatives, we can
simply consider the global changes (�xi) in network variables
caused by a perturbation (�pj ) and introduce the quantities
�Rij (t) and �ρij (t) as follows:

�Rij (t) = xi(t , pj + �pj) − xi(t , pj ),

�ρij (t) = [�Rij (t + �t) − �Rij (t)]/�t .
(6)

Using these finite differences, as an approximation of math-
ematically correct infinitesimal changes, one obtains exactly
the same relationship as Equation (5), but for �Rij (t) and
�ρij (t),

�ρij (t) ≈
n∑

k=1

�Rkj (t) · Fik(t), pj ∈ P i . (7)

Therefore, network connections can be expressed in terms of
the measured changes in the levels of intermediates, without
requiring any knowledge about the values of parameter
changes. Indeed, Equation (5), which used the derivatives, dif-
fers from the (approximate) estimates Equation (7) involving
finite changes by only multiplication of both sides by �pj .

Steady-state conditions necessitate perturbations to each
network node If a network under consideration approaches a
stable steady state, the rank of the matrix R(t , P i ) decreases as
time approaches infinity. In fact, the maximal possible rank of
the steady-state response matrix, R(P i ) = limt→∞ R(t , P i ),
equals n − 1, and to achieve this rank at least n − 1 per-
turbation experiments are required, in which all nodes except
node i are directly perturbed, separately or in combination.
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Therefore, when (quasi)steady-state behavior is displayed, the
Jacobian elements cannot be determined, and only the scaled
Jacobian elements, rij = −Fij /Fii , will be determined using
the following equation (cf. Kholodenko et al., 2002):

n∑
k=1, k �=i

�Rkj · rik ≈ �Rij . (8)

Equation (8) determines the connection coefficients rij using
the finite differences �Rij , which are equal to changes in
state variables following a transition from an initial to a new
steady state. The specificity of a particular perturbation is not
important, as long as this perturbation does not directly affect
node i. Notably, replacing the response coefficients by finite
changes helps use results of systematic gene knock-outs to
infer the architecture of gene networks (de la Fuente et al.,
2002; Kholodenko et al., 2002).

Biological noise Since our strategy relies on the measure-
ment of the differences between perturbed and unperturbed
dynamics, and involves determining the vectors orthogonal
to experimentally obtained changes, robustness to exper-
imental noise is an important issue awaiting theoretical
and experimental analyses. A comparison of the connec-
tion strengths determined at multiple time points using time
series can help one to rule out false positive or false negative
connections.

Experimental design: practical steps to infer the
strengths of dynamic connections leading to
any given network node

(1) Apply an experimental setup, where the states (activ-
ities) of nodes can be measured during a transient
process, for instance, throughout a transition from a
resting to an active state of a network. This transient
process can be initiated by cell stimulation with a lig-
and, or the system behavior may be inherently transient
as for cell cycle or circadian rhythm oscillators.

(2) Select an experimental intervention known to have no
direct influence on a given node (xi). It can be a change
in external ligand concentration, a change in the ini-
tial concentration (activity) of a component different
from xi , a pharmacological manipulation or the use of
nucleic acid-based technologies, such as tetracycline-
inducible expression and small RNA interference. At
selected time points, monitor the perturbed and unper-
turbed values of all n network nodes and determine
the differences according to Equation (6). These data
provide one column of the matrix R(t , P i ) and one
coefficient ρij (t). Note that it is often convenient to
normalize the differences by the mean values; hence,
determine the fractional changes (Kholodenko et al.,
2002).

Fig. 2. Schematic four-gene network. Arrows indicate activation,
and lines with blunt ends represent repressions.

(3) Repeat step (2), in full carrying out as many perturba-
tion experiments as there are nodes (n), and obtain the
matrix R(t , P i ) and n coefficients ρij (t).

(4) At each selected time point, t > 0, solve Equation (5)
to find the Jacobian elements Fij (t).

(5) To obtain a complete architecture of network connec-
tions, steps (2) and (3) should be repeated for each
node xi , i = 1, 2, . . . n. Note that the same measure-
ments (columns of the response matrix) can be used for
different nodes provided these nodes were not directly
affected by the selected perturbations.

Network models used to test the proposed
approach in silico
Reverse engineering gene networks First, the validity of our
approach is demonstrated for a four-gene network (Fig. 2). We
constructed this in silico network using kinetic mechanisms
and parameters for gene interactions drawn from the literature
(Hargrove et al., 1991; Reinitz and Sharp, 1995; von Dassow
et al., 2000). Network nodes represent the mRNA concen-
trations, which are determined by the transcription (vsynth

i )

and degradation (vdegr
i ) rates, d[mRNAi]/dt = v

synth
i − v

degr
i .

Gene interactions result in non-linear dependences of these
rates on other mRNAj concentrations. As previously repor-
ted (Kholodenko et al., 2002; von Dassow et al., 2000), we
describe the rates by the Hill-type equations (Supplementary
Table 1).

Following the experimental setup described above, we ana-
lyzed [mRNAi] transients from a resting state, where all four
genes were inactive, to a stable activity state (Fig. 3). Four
perturbations to the transcription and degradation rates were
applied (indicated in Supplementary Table 1), and the kin-
etic model generated non-linear network responses in lieu
of experimental measurements. Using these data, the finite
differences between the control and perturbed transitions
were obtained according to Equation (6) (as schematically
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Table 1. A snapshot of the retrieved ‘experimental’ and known ‘theoretical’
interaction strengths for the gene network model of Figure 2.

The Jacobian elements Fij are determined at 0.5 h after a transition of the gene network
from a resting state to an active state began.
aRetrieved ‘experimental’ interaction strength.
b‘Theoretical’ interaction strength.

illustrated in Fig. 3A). Finally, using Equation (7) we
inferred both the architecture and the time dependence of
the strength of functional interactions between genes dur-
ing rest-to-activity transition. Figure 3B depicts the dynamics
of non-zero elements of the Jacobian matrix and demon-
strates the accuracy with which the topology and the strength
of dynamic connections were retrieved. Table 1 provides
a snapshot of the entire Jacobian matrix at 0.5 h after the
transient began. As steady state is approached, the devi-
ation between the retrieved and correct interaction strengths
begins to rise (Fig. 3B). Indeed, only the normalized Jacobian
elements (connection coefficients rij ) can be determined when
quasi-stationary responses are monitored (Kholodenko et al.,
2002).

Reverse engineering signaling networks Signaling through
MAPK pathways plays a crucial role in many cellular pro-
cesses, as diverse as growth, proliferation, differentiation and
apoptosis (Chang and Karin, 2001; Levchenko et al., 2000).
MAPK cascades are evolutionarily conserved from yeast to
mammals and usually consist of three levels, where the activ-
ated kinase at each level phosphorylates the kinase at the next
level down the cascade (Fig. 4). At the third (terminal) level,
the bisphosphorylated, active form of a MAPK kinase (MKK–
PP) phosphorylates MAPK. At the second level, MKK is
phosphorylated by active MAPK kinase kinase (MKKK–
PP), which, in turn, is phosphorylated at the first level by
plasma membrane kinases in a sequence of steps involving
also the small GTPase Ras (shown as Ras/MKKKK). A kinetic

Fig. 3. Reverse engineering of dynamic gene interactions. (A)
Computer-generated transients of mRNA concentrations. Numbers
correspond to the genes in Figure 2. The dashed line indicates
the response of gene 1 to a 30% decrease in its transcription rate.
(B) Dynamics of activation or repression of gene i by gene j is
quantified by the Jacobian element Fij . Correct ‘theoretical’ val-
ues (solid lines) and ‘experimental’ estimates of non-zero elements
Fij , deduced using 10% perturbations, are plotted as functions of
time during the transition from a resting state to a stable activity
state of the network, open circles—F12; open diamonds–F14; closed
diamonds—F31; closed circles—F32, closed triangles—F43.

Fig. 4. Kinetic scheme of an MAPK cascade. P and PP designate
monophosphorylated and bisphosphorylated protein forms. Feed-
back effects of MAPK on the rate of MKKK phosphorylation and
MKK dephosphorylation are shown schematically by dashed lines.
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Fig. 5. Inferring dynamic connections successfully: the retrieved time-dependent strength of a negative feedback from MAPK–PP to MKKK–
PP. (A) Computer-generated transients of MAPK cascade components, MAPK–PP, MKK–PP and MKKK–PP, are shown by solid lines. The
dashed line indicates the perturbed MAPK–PP transient (50% decrease in kcat for MKK kinase and 50% increase in Vmax for MAPK
phosphatase). (B) Time-dependent connection strength during the transition of the cascade from a resting state to an active state. The Jacobian
element F26 quantifies a negative feedback from MAPK–PP to MKKK–PP. Solid line, correct ‘theoretical’ value of F26 is plotted as a
function of time. Symbols show how accurately the Jacobian element F26 is determined by using ‘experimental’ interventions with different
magnitudes of parameter perturbations, closed circles—5% , open diamonds—25% and plus—50% , (see Supplementary Tables 1 and 2 for
further details).

model for this pathway is given in Supplementary Table 2.
This model possesses two feedback loops (Fig. 4) and
was published elsewhere (Kholodenko et al., 2002). We
used the model to generate time-dependent responses of the
network variables. Because of moiety conservation, there
are only two independent variables at each cascade level,
meaning that this network has six nodes in total. It is
important to realize that there is mass flow between unphos-
phorylated, monophosphorylated and bisphosphorylated pro-
tein forms at each MAPK cascade level, and information
flow between different levels, which communicate through
regulatory interactions. In contrast with prior approaches,
our method can handle well both mass flow and regulatory
interactions.

We monitored a transition of the MAPK pathway from
a resting state to a stable activity state (Fig. 5A). To
infer connections leading to each node we applied six
different perturbations affecting one or several reactions
(and nodes, respectively) in the MAPK pathway. Using
computer-generated responses, we calculated the finite differ-
ences between the control and perturbed transitions (Fig. 5A).
Finally, using these data, the Jacobian elements were retrieved
by numerical calculation of the solution to Equation (7).
Figure 5B illustrates that 5, 25 and even 50% perturbations
unravel a negative feedback from MAPK–PP to MKKK–PP
and quantify its dynamic strength with a good fidelity at
practically any time before a stable steady state is reached.
Supplementary Table 3 compares the correct (theoretical)
Jacobian elements with ‘experimentally’ deduced interaction
strengths and demonstrates that the architecture of the entire

MAPK pathway is deduced by our method from the observed
time series.

Importantly, the method described here enables us to recon-
struct the dynamics of the connection strengths not only for
gene and signaling networks that exhibit stimulus-induced
transitions from one stable state to another, but also when
no stable steady state exists and a system displays sustained
oscillatory behavior. Here, we highlight the power of our
method using a model of a protein kinase/phosphatase cas-
cade, such as MAPK cascade (Supplementary Table 4), where
a strong negative feedback brings about sustained oscillations
of the activity of protein kinases (Kholodenko, 2000). Figure 6
demonstrates that the oscillatory dynamics of the connection
strengths in the cascade can be efficiently retrieved by our
perturbation approach from time series data on oscillations of
protein kinase activities.

CONCLUSIONS
The results presented here demonstrate how unknown gene
and signaling networks can be reconstructed from time series
measured as responses of intact cells to perturbations. The
experimental interventions need not to be specific, but can
directly influence many components. Our approach can be
applied to a cellular network regardless of its degree of com-
plexity, the presence or the lack of mass flow between nodes
and whether or not a mechanistic description is available.
At the same time, prior information about a network can
be utilized in our method. For instance, if it is known that
two particular nodes do not directly influence a given node i,
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Fig. 6. Oscillatory dynamics of connection strengths is effectively
deduced. (A) Sustained oscillations in the activities of the MAPK
pathway proteins, MAPK–PP, red line; MKK–PP, green; MKKK–
PP, blue. (B) Sustained oscillations of the strength of a negative
feedback. A negative effect of MAPK–PP on MKKK phosphoryla-
tion is quantified in terms of the Jacobian element F15. Solid line,
the correct ‘theoretical’ value of F15 is plotted as a function of time.
Symbols show F15 retrieved from the responses to ‘experimental’
perturbations of 1% (red dot) and 10% (black diamond) magnitudes
(see Supplementary Table 4 for further details). Perturbations were
repeated every 3 min, and the perturbed trajectory was restarted from
the unperturbed solution (time scale corresponds to the unperturbed
trajectory).

the corresponding connection strengths (Jacobian elements)
are equal to zero. Then, the number of unknown interactions
decreases by two, and so does the number of perturbation
experiments required to quantify all connections leading to
module i. Importantly, our method is fully scalable. In fact, an
increase in the node connectivities does not change the number
of required perturbation experiments and calculations, which
is proportional to the amount of nodes, and it does not involve
a combinatorial increase in computations with an increase in
the network complexity.

Hierarchical control of cell machinery spreads over
metabolome, proteome and genome. In cellular networks,
metabolic and lipid transformations and post-translational
modification events result in mass flow connections between
nodes. Mass flow interactions cause any perturbation of
the rate going to or from a particular node to immediately
affect other nodes connected by that rate. Prior approaches,

which required perturbations affecting each node individu-
ally, could not apply to these networks. A distinction of
our approach is its ability to reconstruct not only regulatory
(information) pathways, but also networks involving mass
flow connections. By measuring metabolic, proteomic and
gene time series data, the method presented enables us to
unveil the signaling circuitry of protein–protein interactions
and to infer which metabolites and proteins affect which
genes. This strategy may bring to realization the ambitious
goal of a quantitative understanding of how the complete
metabolic/proteomic/genetic ‘supernetwork’ of living cells is
wired.
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