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ABSTRACT
Motivation: Background correction is an important preprocess in
cDNA microarray data analysis. A variety of methods have been used
for this purpose. However, many kinds of backgrounds, especially
inhomogeneous ones, cannot be estimated correctly using any of the
existing methods. In this paper, we propose the use of the TV+L1

model, which minimizes the total variation (TV) of the image subject
to an L1-fidelity term, to correct background bias. We demonstrate its
advantages over the existing methods by both analytically discuss-
ing its properties and numerically comparing it with morphological
opening.
Results: Experimental results on both synthetic data and real microar-
ray images demonstrate that the TV+L1 model gives the restored
intensity that is closer to the true data than morphological opening. As
a result, this method can serve an important role in the preprocessing
of cDNA microarray data.
Contact: wy2002@columbia.edu

1 INTRODUCTION
The cDNA microarrays consist of tens of thousands of individual
DNA sequences printed in parallel on a glass microscope slide. They
are designed to detect specific genes and to measure their activities in
tissue samples by monitoring the differential hybridization of the two
DNA or RNA samples to the sequences on the array. The research
of cDNA microarrays has greatly contributed to cell biology, human
health and disease, drug discovery and other related areas.

From the image analysis perspective, one of the biggest problems
of cDNA microarray images is that they are plagued with inhomogen-
eous backgrounds. On a microarray slide, the measured fluorescence
intensity of a spot is a combination of the image background intens-
ity near the spot and the intensity determined by the hybridization
level of the mRNA samples with the spotted DNA. Background cor-
rection is necessary to estimate the true hybridization level of the
cDNA. The existence of inhomogeneous background can make this
task very difficult.

In the research community, different methods have been developed
to correct microarray background bias. The published methods can
be classified into three categories: (1) constant background correc-
tion, (2) local background correction and (3) morphological opening

∗To whom correspondence should be addressed.

Fig. 1. Different regions (gray) used in local background (white) corrections
by ScanAlyze (left), ImaGene (middle) and genePix (right).

(MO). Constant background correction methods use the mean or
median intensity of the whole image background as the estim-
ated background intensity, and, consequently are seldom used in
real applications with inhomogeneous backgrounds. Local back-
ground correction methods calculate background intensity locally
using the pixels that are near cDNA spots. These methods give
the corrected images by subtracting the mean or median intens-
ity value of local pixels from original images. Figure 1 depicts
the different local regions used in ScanAlyze (Eisen and Brown,
1999, http://rana.lbl.gov/EisenSoftware.htm), ImaGene (Medigue
et al., 1999) and GenePix (Axon Instruments, 1999). One prob-
lem of these methods is that the mean or median intensity values
of the pixels in a local region of a spot may be higher than the
intensity of the spot itself. This happens when the background
has big intensity changes near the spot. Consequently, local back-
ground correction may give negative spot intensity values, which
is wrong. In general, the performance of local correction degrades
under the presence of local background artifacts or variation. The
third category is MO (Soille, 1999), which estimates background
intensity using a non-linear filter. This filter essentially smoothes
the entire image, albeit, in a non-uniform way. It removes all local
peaks, including both artifacts and spots, and returns a smoothed
image as the background estimate. More specifically, MO applies
a local minimum filter, which is an erosion process, followed by
a local maximum filter, which is a dilation process, to the image.
This procedure is used in the software package Spot (Beare and
Buckley, 2004, http://spot.cmis.csiro.au/spot/doc/Spot.pdf). MO is
considered superior to constant background and local background
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corrections due to its robustness against local artifacts and variations.
It seldom gives negative spot intensity. Moreover, Yang et al. (2000)
and Smyth et al. (2003) studied MO and claimed that it gave the best
results. However, there are some limitations. The most serious one is
that it smoothes the edges (i.e. sharp intensity changes) in the back-
ground and thus leaves these background edges in the foreground
output. This background bias usually has arbitrary sizes and shapes,
and is therefore hard to be corrected further by heuristics. Figure 3
(column 4) shows this effect. In addition, MO has the effects of
local overerosion or overdilation. The level of these effects depends
on the window size of the morphological operator. Smaller window
size minimizes these effects, but in the applications to microarray
images, the window size must be larger than the spot size.

To overcome these problems in microarray background correc-
tion, we propose the use of a total variation (TV)-based regu-
larization method with an L1-norm fidelity term (Alliney, 1992;
Nikolova, 2002; Chan and Esedoglu, 2004, ftp://ftp.math.ucla.
edu/pub/camreport/cam04-07.pdf). The preliminary numerical res-
ults on both synthetic and real data appear to give significant
improvements over MO.

The rest of the paper is organized as follows. We describe the
TV+L1 model in Section 2 and give its properties in Section 3,
including the choice of the only parameter λ. Section 4 dis-
cusses implementation aspects. Finally, Section 5 demonstrates the
advantages of the TV+L1 model over MO using numerical examples.

2 THE TV+L1 MODEL
We begin with the discussion of a generalized signal regularization
framework, which solves a variational problem. In this framework,
f is modeled as the sum of image cartoon u and texture v, where
f , u and v are functions with bounded supports. Cartoon contains
background hues and important boundaries. The rest of the image,
which is texture, is characterized by small-scale oscillating patterns.
If present, noises and small artifacts are included in v. Since cartoon
u is more regular than texture v, we can obtain u from input f by
letting u to be the solution that minimizes an irregularity measure
while being close to f with respect to a fidelity (distance) measure.
The choice of the irregularity measure and the fidelity measure is
application dependent.

A popular method for image processing in this framework is given
by Rudin et al. (1992). They proposed using TV

∫ |∇u| of u as
the irregularity measure and the L2-norm of (f − u) as the fidel-
ity measure for noisy image restoration, where u is defined in the
space of functions with bounded variations (the BV space). This
method removes noises while maintaining the sharp edges, which
are important in most applications. Instead of using the L2-norm,
Alliney (1992), Nikolova (2002) and Chan and Esedoglu (2004) pro-
posed and analyzed the TV model using the L1-norm. We borrow the
idea of image decomposition from Chan and Esedoglu (2004) and
apply this model to background correction. Formally, this TV+L1

model is formulated as:

min
u∈BV(�)

∫
�

|∇u(x)| dx s.t. ‖f (x) − u(x)‖L1 ≤ σ , (1)

where � is the image domain and functions f and u are defined on �.
Since (1) is a convex optimization problem, it can be reformulated as

min
u∈BV(�)

∫
�

|∇u(x)| + λ|f (x) − u(x)| dx, (2)

where λ is the Lagrange multiplier. This equivalence is covered in
most textbooks on convex analysis (Rockafellar, 1996). When we
apply this model to cDNA microarray image background correction,
f is the microarray image input. Since u is the cartoon of f , it is
the corrected background output, and therefore, f − u is the signal
of cDNA spots. Noting that the solution of Equation (2) depends on
scalar λ, we often write uλ and vλ = f − uλ as the background and
spot output.

In order to explain why this model can correctly extract cDNA
spots from the input with inhomogeneous backgrounds, we describe
its analytical properties and derive λ in the following section.

3 ANALYTICAL PROPERTIES
In this section, we discuss the important properties of the TV+L1

model that help to understand its good performance on microarray
background correction. To avoid too much analysis on the boundary
of �, we assume � = R

2. The following lemma bridges the gap
between the variational problem (2), which is easy to solve, and its
geometrical equivalent, which is easy to analyze.

Lemma 1 (Chan and Esedoglu, 2004). Solving Equation (2) with
� = R

2 is equivalent to solving the following level-set-based
problem:

min
u∈BV

∫ +∞

−∞
Per ({x : u(x) > µ})

+ λVol ({x : u(x) > µ} ⊕ {x : f (x) > µ}) dµ, (3)

where Per is the perimeter function, Vol is the volume function and
S1 ⊕ S2 := (S1 \ S2) ∪ (S2 \ S1) for the given sets S1 and S2.

According to this lemma the TV+L1 model is operated on the
level sets {x : u(x) > µ} and {x : f (x) > µ}, for µ ∈ (−∞, ∞),
and it minimizes a geometric problem in them. This paves the way
to the rest of the analysis.

Since cDNA spots are almost round, we use disk signal to approx-
imate them. Using Lemma 1, we can analytically derive the exact
solution vλ = f − uλ in Equation (2):

(1) In the case when the input has the background with intensity c0

and a cDNA spot with intensity c0 +c1, we have the input f =
c0 + c11Br (y)(x), i.e. f is a function with the value c0 + c1 in
the disk centered at y and with radius r , and the value c0

anywhere else. (Chan and Esedoglu, 2004)

vλ =




c11Br (y)(x) 0 < λ < 2/r ,

{s1Br (y)(x) : 0 ≤ s ≤ c1} λ = 2/r ,

0 λ > 2/r .

(4)

Proof. Without loss of generality, we assume c1 > 0.
Clearly, solution u(x) of Equation (2) is bounded between c0

and c0 + c1. It follows that Equation (3) is simplified to:

min
u∈BV

∫ c0+c1

c0

Per ({x : u(x) > µ})

+ λVol ({x : u(x) > µ} ⊕ {x : f (x) > µ}) dµ. (5)

Since {x : f (x) > µ} ≡ Br(y) for µ ∈ (c0, c0 +c1), S(µ) :=
{x : u(x) > µ}must solve the following geometrical problem:

min
S

Per (S(µ)) + λVol (S(µ) ⊕ Br(y)) , (6)
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for all µ ∈ (c0, c0+c1). First, S(µ) ⊆ Br(y) holds; otherwise,
S(µ)∩Br(y) achieves a lower objective value of Equation (6)
than S(µ). Then, it follows that

Vol (S(µ) ⊕ Br(y)) = Vol (Br(y)\S(µ)) . (7)

Therefore, to minimize Equation (6) is to minimize the peri-
meter of S while maximizing its volume. According to the
Isoperimetric Theorem (Siegel, 2003), S(µ) must be either ∅
or a disk. Let rS denote the radius of S, it is easy to see from
the optimality of Equation (6) that rS = r if λ > 2/r , rS = 0
if 0 < λ < 2/r and rS ∈ {0, r} if λ = 2/r . Equation (4)
follows from relationship vλ = f − uλ.

Note that λ, which determines whether vλ is c11Br (y)(x) or
0, depends only on the disk radius r but not on the values c0

and c1 and the disk center y! When λ = 2/r , Equation (2)
gives multiple solutions. Generally, the analytical solutions of
vλ are not unique for at most a countable number of λs (Chan
and Esedoglu, 2004). Therefore, we can omit these values in
the forthcoming analysis and in the numerical tests.

(2) In the case when the cDNA spot has inhomogeneous intens-
ity and its signal resembles an annulus, we have f = c0 +
c11Ar1,r2 (y)(x), where 0 < r2 < r1 and Ar1,r2 represents the
annulus lying between two concentric circles with radii r1 and
r2. In other words, f takes the value c0 + c1 between the two
circles and the value c0 elsewhere. Then

vλ =




c11Ar1,r2 (y)(x) 0 < λ < min
{

2r1

r2
1 − 2r2

2
, 2

r1 − r2

}
,

−c11Br2 (y)(x) 2
r1 − r2

< λ < 2
r2

,

0 λ > max
{

2
r1 − r2

, 2
r2

}
.

(8)

As in the previous case, scalar λ, which determines whether
the entire spot signal is given in the output, only depends
on size parameters r1 and r2. The following two properties
describe the analytical solutions of two more complicated
cases:

(3) Suppose f = c0 + c11Br1 (y1)(x) + c21Br2 (y2)(x), where
c1, c2 > 0, 0 < r2 < r1 and Br2 (y2) ⊂ Br1(y1)

v(λ) =




(c11Br1 (y1) + c21Br2 (y2))(x) 0 < λ <
2

r1
,

c21Br2 (y2)(x)
2

r1
< λ <

2

r2
,

0 λ >
2

r2
.

(9)

(4) Assume the same as in the above property except −c1 < c2 <

0 and y1 = y2 := y, then

vλ =




c11Br1 (y) + c21Br2 (y) 0 < λ < 2
r1

,

−c21Ar1,r2 (y)(x) 2
r1

< λ < min
{

2r1

r2
1 − 2r2

2
, 2

r1 − r2

}
,

c21Br2 (y)(x) 2r1

r2
1 − 2r2

2
< λ < 2

r2
,

0 λ > max
{

2
r1 − r2

, 2
r2

}
.

(10)

Equation (4) shows that, when both the background and the spot
have homogeneous intensities, any λ < 2/r , where r is the spot

radius, makes the TV+L1 model to return the exact spot intensity
and the correct background. The other three properties infer that this
is also true when the spots are not homogeneous, which is often the
case in reality. Similar properties can be further extended to more
general cases as long as the feature level sets have smooth boundaries
(Chan and Esedoglu, 2004). In general, the decomposition using the
TV+L1 model is only scale dependent, and this property together
with the edge preserving property (Strong and Chan, 2003) explain
why the model is suitable for extracting small-scale signal under
large-scale inhomogeneous background.

A disadvantage is that the model always leaves small areas where
spots are located with constant intensity values in the estimated back-
ground. In the above properties, if the true background intensity is a
ramp ranging from cl

1 to ch
1 in the area under the spot, then uλ = ch

1
when λ < 2/r . This happens because TV+L1 decomposes f based
on the scale of its level sets and the µ level set of f , for µ ∈ [cl

1, ch
1 ),

is of a much larger scale than the ch
1 level set—the spot support.

However, the intensity of large-scale inhomogeneous backgrounds
changes relatively slowly except which crossing sharp boundaries;
hence the background intensity in the small area under a spot can be
regarded homogeneous (constant) in most cases. Consequently, we
do not observe this effect in corrected backgrounds of real cDNA
microarray images (Fig. 5) although we do so in the synthetic results
(Fig. 3) with steep ramps in backgrounds (Fig. 2).

4 IMPLEMENTATION: PDE AND SOCP
APPROACHES

In this section, we introduce two independent approaches to solve the
discretized version of the TV+L1 model. The microarray images can
be represented as two-dimensional (2D) m × n matrices in R

m×n.
Let matrix f ∈ R

m×n denote the input microarray image. f con-
tains inhomogeneous background u ∈ R

m×n, which the background
correction process should identify. Let v(= f − u) denote the rest
of the image. Since v contains microarray spot signal, which is in
small-scale, v is treated as the texture part in the TV+L1 model.

The existing partial differential equation (PDE) approach (Chan
and Esedoglu, 2004) requires the TV+L1 model to be represented
in the relaxed form [Equation (2)] and the existence of its first-order
optimal condition: the Euler–Lagrange equation

∇ ·
( ∇u

|∇u|
)

+ λ
f − u

|f − u| = 0. (11)

In practice, to avoid division by zero, a small value ε > 0 is added to
|∇u| and |u−f |. This change also makes the method strongly convex
and ensures uniqueness. To solve Equation (2), the PDE approach
uses an artificial time stepping method (an evolving method solving
heat PDE with heat source) to find the solution of Equation (11). The
evolving formula used in Chan and Esedoglu (2004) is

un+1
i,j = un

i,j + δt � ∂−
x

(
∂+
x un

i,j

M

)
+ δt � ∂−

y

(
∂+
y un

i,j

M

)

+ δt � λ
f n

i,j − un
i,j√

(f n
i,j − un

i,j )
2 + ε

, (12)

where

M :=
√

(∂+
x un

i,j )
2 + (∂+

y un
i,j )

2 + ε, u0
i,j = fi,j ,
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δt � is the time step, and ∂+ and ∂− are forward and backward partial
finite differences, respectively. Clearly, this approach has cheap per-
iteration cost as it only computes the first-order discrete derivatives in
the LHS of Equation (11) in each iteration. Numerical experiments,
however, show that this advantage is offset by the large number of
iterations needed to reach a steady state u. Since the last term in
Equation (12) is very sensitive to the sign of f n

i,j − un
i,j , especially

when the system is close to a steady state, δt � has to be very small
for the update formula (12) to catch all important changes in the
flow field u. As a result, the PDE approach must reduce δt � with the
increase of n. We cannot reduce δt � arbitrarily close to zero because
too small δt � causes numerical problems and increases the execu-
tion time. On the other hand, the second-order cone programming
(SOCP) approach (Goldfarb and Yin, 2004) described in the follow-
ing paragraph neither relies on the existence of Equation (11) nor
uses any time steps, and hence, avoids the problems of the PDE
method in practice.

The SOCP (Alizadeh and Goldfarb, 2003) is an extension to linear
programming (LP). The vector inequality constraint in the form of
a ≥ b in LP is extended to a − b ∈ K in SOCP, where K is one or
a Cartesian product of second-order cones {(s0; s̄) : s0 ≥ √

s̄ ′s̄}. In
the 1D case, a second-order cone reduces to {s0 : s0 ≥ 0}. In the 3D

space, {(s0; s1, s2) : s0 ≥
√

s2
1 + s2

2 } looks like an ice cream cone.
SOCPs can be solved by modern interior-point algorithms that are
efficient both in theory and in practice. Goldfarb and Yin (2004) intro-
duced SOCP to a group of TV-based image regularization models,
including Equations (1) and (2). The TV term

∫
�

|∇u| dx is handled
discretely by

∑
i,j �i,j subject to �2

i,j ≥ (∂xui,j )
2 + (∂yui,j )

2 and the

L1 term is handled discretely by
∑

i,j wi,j subject to wi,j ≥ fi,j −ui,j

and wi,j ≥ ui,j − fi,j . In addition, by defining operators ∂x and
∂y as forward, backward or centered finite differences that are lin-
ear in u, Equations (1) and (2) can be formulated as SOCPs. Each
of the SOCPs minimizes a linear function subject to a set of lin-
ear equality and inequality constraints and second-order constraints
�2
i,j ≥ (∂xui,j )

2 + (∂yui,j )
2, for each i, j . In SOCP interior-point

methods, the per-iteration cost of solving the SOCP is much higher
than calculating Equation (12), but on the other hand they usually
take only 10–30 iterations to return an accurate solution in prac-
tice, and this number of iterations does not increase with image size.
Moreover, Goldfarb and Yin (2004) demonstrated the application of
domain decomposition in the TV+L2 model, which further cuts the
computation time and memory usage. This decomposition technique
can be also applied to the TV+L1 model.

Comparing these two approaches, we find that the PDE approach
is more suitable to process large cDNA microarray images in a batch
mode while the SOCP approach is more useful to process smaller
cDNA microarray images with higher accuracy.

5 NUMERICAL EXPERIMENTS
In this section, we compare our proposed method against MO on
both synthetic data and real cDNA microarray images.

5.1 Parameter selection
As shown in Section 3, the choice of parameter λ in the TV+L1

model only depends on the scale of the signal to be extracted. To
return entire spot signal in vλ, the model can use any λ < 2/rmax,
where rmax denotes the largest spot radius in a microarray image.
Since too small λ may cause numerical inaccuracy, it is better to

(a) (b) (c)

(d) (e) (f)

Fig. 2. Generated synthetic data

choose λ that is slightly <2/rmax. For fair comparison, we adjusted
the window sizes when applying MO. We found that the use of over-
small and overlarge window sizes causes the estimated background
to be contaminated by spot intensity and affected by overerosion and
overdilation, respectively, hence we chose to use the window sizes
that minimized these effects and showed the best results. Follow-
ing these guidelines, for all the six synthetic images with rmax = 5,
we used λ = 0.35 in the TV+L1 model and 8 × 8 window size
in MO. For the real cDNA microarray images, we used λs varying
between 0.3 and 0.8 and MO window sizes varying between 5 × 5
and 10 × 10 since these images are obtained from different sources
and thus in different zooms. In practice, if spot sizes of a batch
microarray images are fixed (e.g. in the microarray images produced
by the same device) then a single λ is good for all the microarray
images.

5.2 Codes and running times
We developed our PDE code in C++ and used commercial optimiz-
ation package Mosek (called in Matlab) as our SOCP solver. We also
implemented our MO code in C++. The average running times to
process a 150×150 grayscale image are 18.34 s by the PDE approach,
12.25 s by the SOCP approach and 4.14 s by the MO approach on
a Pentium IV-2.8 GHz Windows workstation with 1GB RAM. We
recommend Goldfarb and Yin (2004) to readers for optimizing the
SOCP solver and for a comprehensive comparison between the PDE
and the SOCP approaches.

5.3 Synthetic data generation
A synthetic microarray image f s is the sum of a foreground image
vs of spots and a background image us , which are generated on
the 256 gray level scale. The intensity of each spot in vs is uni-
formly distributed between 15 and 150. The radius of each spot is
uniformly distributed between 0 (not visible) and 5 pixels. They
are located along an n × n grid but their centers are subject to
small Gaussian disturbance. These spots simulate cDNA microar-
ray spots. Different backgrounds have been generated for the test.
They are backgrounds with linear intensity changes (a), multilinear
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Fig. 3. Background removal results of synthetic microarray images (a)–(f). Each row shows one synthetic example. Column: (1) Original images, (2) ground
truth background, (3) ground truth signal, (4) background estimation using MO, (5) Restored foreground using MO, (6) background estimation using the
TV+L1 model and (7) restored foreground using the TV+L1 model.

gradient backgrounds (b) and (c), mildly inhomogeneous back-
ground (d), mildly inhomogeneous background with sharp edges
(e) and large-scale Gaussian background (f), which are depicted in
Figure 2. We use these examples to simulate real cDNA microarray
images.

5.4 Synthetic data test results
Figure 3 shows the background correction results given by MO and
TV+L1. In all our tests with synthetic data, the TV+L1 model gave
more accurate backgrounds as compared with the originals than MO.
While TV+L1 preserves the edges in the backgrounds in tests (b),
(c) and (e), MO creates the obvious edge distortions in these tests. In
the TV+L1 result (c6), we also observe the constant intensity left in
the small areas where the spots are located. The MO results of tests
(a), (b) and (e) show oversmoothed edges but stair-cased ramps in
the background, and the MO results of test (d) and (f) show over-
erosion and dilation effects. Moreover, in test (c), we can see some
background intensity is left in the foreground output of MO (c5).
To quantize the differences, we defined the average intensity errors Fig. 4. The AIEs of restored intensities.
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Fig. 5. Background removal results of real microarray images I–VI . Rows: (1) Original images, (2) background estimation using MO (3) restored foreground
intensity using MO (+100 for better visualization), (4) background estimation using the TV+L1 model and (5) restored foreground intensity using the TV+L1

model (+100 for better visualization).

(AIEs) (Fig. 4) of these results as:∑m
i=1

∑n
j=1 |utrue

i,j − ui,j |
m × n

,

where utrue and u are true and extracted backgrounds in form of m×n

matrices, respectively. Figure 4 clearly shows that the AIEs of the
results obtained by applying the TV+L1 model are much smaller
than those obtained by applying MO.

5.5 Real data test results
In this subsection, we continue to demonstrate the effectiveness of
the TV+L1 model by comparing it with MO on six problematic but
representative real cases of cDNA microarray images. Background
correction is often separately applied to the red and the green channels
during the generation of real cDNA microarrays. However, since our

testing microarray images have the similar inhomogeneous back-
grounds in both channels, we directly apply the MO and TV+L1

models to the images with combined red and green channels and a
reduced color depth of 256 grays. Figure 5 depicts the results.

• Case I (Yang, 2004, http://www.biostat.ucsf.edu/jean/
Presentation/ShareMAF/SMFQualityV3.pdf). This case
demonstrates the importance of the edge preserving prop-
erty of the TV+L1 model. In the MO correction [Fig. 5I-2]
of the water stain near the upper left corner [Fig. 5I-1], the
edge of the stain is smoothed. The TV+L1 model, however,
keeps the edge of the stain perfectly intact [Fig. 5I-4]. This
renders the restored signal closer to the original.

• Cases II, III and IV (Yang and Barczak, 2003, http://arrays.
ucsf.edu/presentations/SandlerLabMeeting.2003.07.07.ppt).
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These three cases demonstrate the weakness of MO. As we
have mentioned in the introduction, MO using a large win-
dow size will smooth away smaller stains while MO using a
small window size will affect the spot intensity values. This
is why some small stains are not seen in the MO background
correction. On the other hand, the TV+L1 model does not
have this problem as we can see in these three cases that all
the large stains and the small stains are well kept.

• Case V Bibeau et al. (2005), http://www.corning.com/
lifesciences/technical_information/techdocs/troubleshooting
UltraGAPS_ProntoReagents.asp). In this case, the left side of
the image has water stain overlapped with the signals. This
stain is not completely kept in the background using MO
as we can see a vertical line near the left edge of the estim-
ated foreground (Fig. 5V-4). The TV+L1 model successfully
keeps the stain in the background.

• Case VI (Bibeau et al., 2005). In this extreme example, both
methods give satisfying results. The advantage of the TV+L1

model over MO is demonstrated by the sharper edges and
more details of the water drop in the estimated background
and the clearer spot expressions under the water stain in the
estimated foreground.

In cases I–IV where the spot sizes are similar, λs were set to
0.3. In cases V and VI, λs were set to 0.8 as the spot sizes are
much smaller than those in the previous cases. We also adjusted
the window sizes of MO and selected the smallest window size
that keeps the spots in the estimated foregrounds. We note that,
in the estimated foregrounds of the TV+L1 model, only spot sig-
nals (and small-scale artifacts) have positive intensity values. The
remaining area has zero intensity uniformly. Clearly, this prop-
erty is very useful in spot finding (Saeed et al., 2003; Jain et al.,
2002; MicroDiscovery, 2004, http://www.microdiscovery.de; Koada
Technology, 2004, http://www.koadarray.com), another important
process on cDNA microarray images.

6 DISCUSSION AND CONCLUSION
In this paper, we propose the use of the optimization model of minim-
izing the TV and an L1-norm fidelity term for correcting background
intensity inhomogeneities. This model decomposes the input into a
large-scale background part and a small-scale signal part. It is suitable
for background correction because the decomposition is independent
of the feature intensity and is controlled simply by a scalar parameter
λ. Moreover, the correct λ can be easily calculated. We generate syn-
thetic data with various background bias and measure the accuracy of
restored signal. The numerical results show that the method performs
better than the prevailing method—MO. This is further supported by
experimental results on six real microarray images. One disadvantage
of the proposed method is that it leaves small areas where spots are
located with constant intensity values in the estimated background.
In future we will develop finer correction methods to remove this
defect.

In conclusion, we believe that the proposed work will contrib-
ute to the field of cDNA microarray data analysis on account of a
more accurate restoration of the original intensities of the hybridized
spots.
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