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ABSTRACT
Motivation: Spot intensity serves as a proxy for gene expression in
dual-label microarray experiments. Dye bias is defined as an intensity
difference between samples labeled with different dyes attributable to
the dyes instead of the gene expression in the samples. Dye bias that
is not removed by array normalization can introduce bias into compar-
isons between samples of interest. But if the bias is consistent across
samples for the same gene, it can be corrected by proper experi-
mental design and analysis. If the dye bias is not consistent across
samples for the same gene, but is different for different samples, then
removing the bias becomes more problematic, perhaps indicating a
technical limitation to the ability of fluorescent signals to accurately
represent gene expression. Thus, it is important to characterize dye
bias to determine: (1) whether it will be removed for all genes by array
normalization, (2) whether it will not be removed by normalization
but can be removed by proper experimental design and analysis and
(3) whether dye bias correction is more problematic than either of these
and is not easily removable.
Results: We analyzed two large (each >27 arrays) tissue culture
experiments with extensive dye swap arrays to better characterize
dye bias. Indirect, amino-allyl labeling was used in both experiments.
We found that post-normalization dye bias that is consistent across
samples does appear to exist for many genes, and that controlling
and correcting for this type of dye bias in design and analysis is advis-
able. The extent of this type of dye bias remained unchanged under
a wide range of normalization methods (median-centering, various
loess normalizations) and statistical analysis techniques (parametric,
rank based, permutation based, etc.). We also found dye bias related
to the individual samples for a much smaller subset of genes. But
these sample-specific dye biases appeared to have minimal impact
on estimated gene-expression differences between the cell lines.
Contact: dobbinke@mail.nih.gov
Availability:
Supplementary information: http://linus.nci.nih.gov/∼brb/
TechReport.htm

INTRODUCTION
In dual label microarray experiments, the fluorescent intensity of a
dye in a spot on the microarray serves as a measure of the amount of
the mRNA in the original sample resulting from transcription of the
gene corresponding to the cDNA or oligonucleotide printed on that
spot. But, in both direct and indirect labeled experiments, the fidelity
of the intensity measurement to the underlying gene expression may
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be different for the two dyes.1 To fix ideas, consider a series of self–
self hybridization arrays, where the same RNA sample is tagged
with both dyes during separate reverse transcriptions and hybridized
to each array. For a particular gene, the Cy3/green channel may
appear consistently brighter than the Cy5/red channel, despite the fact
that there are no real differences in expression. This phenomenon is
usually called dye bias (Tseng et al., 2001; Kerr et al., 2002; Dobbin
et al., 2003a,b; Dombkowski et al., 2004; Rosenzweig et al., 2004),
because it could potentially introduce bias into comparisons.

Dye bias can be subdivided into four different types: (1) dye bias
that is the same for all genes on an array, causing one channel to
appear brighter overall than the other; (2) dye bias that depends
on the overall spot intensity, and is different for bright spots than
for dim spots; (3) dye bias that is associated with some subset of
genes, but is consistent for the same gene across samples; (4) dye
bias that depends on a combination of characteristics of the sample
as well as the gene. Dye bias of type (1) should be eliminated by
the usual array normalization procedures (e.g. median centering of
arrays, loess normalization), and loess normalization (Yang et al.,
2002) is designed to eliminate bias of type (2). We will call type (3) a
gene-specific dye bias because the bias is different for different genes,
but the same for a given gene across all samples in an experiment.
(Note that we are using the convention to refer to spots as genes, as
in ‘gene-specific dye bias,’ although in fact not every spot is always
associated with a unique gene, so that this would more properly be
referred to as ‘feature-specific dye bias’.) This type of bias can be
eliminated by statistical design and analysis. We will call type (4)
a gene- and sample-specific dye bias because it depends on both
the gene and the sample being analyzed. This type of bias is more
difficult to eliminate.

This paper investigates gene-specific dye bias and gene- and
sample-specific dye bias. Gene-specific dye bias will not affect com-
parisons between samples or classes of samples labeled with the same
dye, because the bias will cancel out of the comparisons. A ‘refer-
ence design’ is a design in which each array includes a common
reference sample consistently labeled with the same dye. Even in

1In direct labeled experiments, the efficiency of the incorporation of a dye
during the reverse transcription of the mRNA may depend on the transcript’s
particular nucleotide sequence, and this incorporation efficiency may be dif-
ferent for the two dyes used in an experiment. Indirect labeling (Manduchi
et al., 2002), which was used in the experiments presented here, lessens the
effect of incorporation efficiency, but the quantum efficiencies and stabilit-
ies of the dyes are different, which can produce a phenomenon similar to
differential incorporation efficiency.
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(a) 
Array 1 Array 2 Array 3 Array 4 Array 5 Array 6 

Cy3 Tumor Tumor Tumor Normal Normal Normal
Cy5 Reference Reference Reference Reference Reference Reference 

(b) 
Array 1 Array 2 Array 3 Array 4 Array 5 Array 6 

Cy3 Tumor Tumor Tumor Tumor Tumor Tumor 
Cy5 Normal Normal Normal Normal Normal Normal

(c) 
Array 1 Array 2 Array 3 Array 4 Array 5 Array 6 

Cy3 Tumor Normal Tumor Normal Tumor Normal
Cy5 Normal Tumor Normal Tumor Normal Tumor 

Fig. 1. Examples of dual-label microarray designs. (a) A reference design
comparing tumor tissue with normal tissue. (b) A design comparing tumor
tissue with normal tissue. (c) A balanced block design comparing tumor tissue
with normal tissue.

the presence of gene-specific dye bias, the reference design will not
produce biased comparisons among classes of the (non-reference)
samples. For example, in Figure 1a, comparisons between the tumor
and normal tissues will not be biased.

Gene-specific dye bias may affect comparisons between samples
or classes of samples labeled with different dyes, because the bias
may not cancel out of the comparisons. For example, Figure 1b
shows an experiment in which comparisons of the tumor tissue with
the normal tissue will be affected by gene-specific dye bias. Since
all the tumor tissues are labeled with Cy3 and all the normal tissues
with Cy5, observed differences between the two tissue types may be
attributable to either the gene-specific dye bias or to real differences in
gene expression between the tumor and normal tissues. The design in
Figure 1b is said to ‘completely confound’ (Cochran and Cox, 1992)
the gene-specific dye bias with the tissue type distinction, because
the two cannot be separated. Figure 1c shows a balanced block design
in which half the tumor samples are labeled with Cy3 and the other
half with Cy5, and the same for the normal samples. This labeling
strategy removes the gene-specific dye bias from the comparisons
of the tumor samples and the normal samples, and proper statistical
analysis can result in a significant increase in efficiency compared
with the reference design (Dobbin and Simon, 2002). Intuitively, the
adjusted statistical analysis addresses the question: if these samples
were all labeled the ‘same way,’ would there be significant differences
between the gene-expression measurements? The ‘same way’ could
be interpreted to mean that they were all labeled with Cy3 or with
Cy5, or labeled with both the dyes and the average over the two
dyes calculated. All three of these interpretations of ‘same way’ will
produce identical statistical inference, which is why the dye bias is
said to be eliminated from the analysis. Biases are not always so easy
to eliminate. For instance, gene- and sample-specific dye bias is not
subject to this type of statistical correction.

Gene- and sample-specific dye bias is more problematic. This type
of dye bias is affected by characteristics of the sample as well as the
gene, and was proposed by Dombkowski et al. (2004). In the presence
of this type of dye bias, there is no straightforward way to analyze
the data so as to eliminate the dye bias, as was the case with gene-
specific dye bias. The reason being, that one can no longer answer
in a general way the question: ‘If all the samples were measured in
the “same way,” would there be significant differences?’ because the
answer will depend on how one defines the ‘same way.’ For instance,
the answer will be different if one interprets ‘same way’ to mean all
labeled with Cy3, than if one interprets it to mean all labeled with
Cy5, or to mean all labeled with both dyes and the average of the

two intensities calculated. Each of these three interpretations will
produce different statistical inferences (for proof, see Supplement 2
of Supplementary data). But there is no a priori reason to choose one
of these definitions over the others. Hence, there enters an arbitrary
decision into the process which will affect the conclusions of the
statistical analysis and truly valid, objective analysis is not possible.
In particular, even dye-swapping every array will not allow one to
perform valid statistical analyses free of gene- and sample-specific
dye bias (although this was suggested by Dombowski, et al., 2004).

Previous preliminary findings related to gene-specific dye bias
(Tseng et al., 2001; Kerr et al., 2002; Dobbin et al., 2003b;
Rosenzweig et al., 2004) in direct labeled experiments have been
highly tentative because of the small sample sizes used. Dombkowski
et al. (2004) encountered gene- and sample-specific dye bias, but
did not quantify the phenomenon adequately to assess its impact.
This paper attempts to address the shortcomings of the previous
studies by (1) analyzing larger datasets with sufficient replication
to assure robust estimation and inference in gene-specific models,
(2) considering both types of dye bias separately, (3) analyzing data
from multiple platforms, and data that utilized indirect labeling tech-
nology and (4) explaining clearly the impact of these findings for
statistical design and analysis of future microarray studies.

MATERIALS AND METHODS

Experimental description
Preparation of cDNA and oligonucleotide arrays Microarrays were
manufactured at the NCI Microarray Facility, Advanced Technology Center,
Gaithersburg, MD. Arrays with ∼10 000 cDNAs were prepared from ready
to print UniGEM2 libraries obtained from Incyte, Inc. (Wilmington, DE).
Human Genome Oligo Set Version 2.0 Oligo libraries containing ∼22 000
oligonucleotides of 70 bases in length were obtained from Operon, Inc.
(Alameda, CA). Arrays were printed by standard protocols on Corning Ultra-
GAPS II slides (Corning, NY) using a GeneMachine® (San Carlos, CA)
OmniGrid 100 instrument. cDNAs were suspended at a concentration of
100 µg/ml and oligonucleotides at 25 µM in 3× SSC buffer, and the arrays
printed using SMP3 pins from Telechem International (Sunnyvale, CA). The
spotted nucleic acids were fixed to the slides and blocked with protocols
supplied by the manufacturer.

Cell lines and RNAs Growth of cell lines and RNA isolation was
done at the core Gene Expression Laboratory at NCI-Frederick. MCF10A
(benign mammary epithelial), LNCAP (prostate carcinoma), Jurkat (T-cell
lymphoma), SUDHL6 (germinal center B-cell like diffuse large B-cell
lymphoma), OCI-Ly6 (activated B-cell like diffuse rare B-cell lymphoma)
and L428 (Hodgkin’s lymphoma) were grown under standard conditions
(Chen et al., 1996), and RNA was isolated from the cells using TriReagent
following the manufacturer’s protocol (Molecular Research Center, Inc.,
Cincinnati, OH). The integrity of the RNA was confirmed by analysis with the
Agilent 2100 Bioanalyzer (Palo Alto, CA) using the RNA 6000 LabChip®kit.
As a control RNA, Human Universal Reference RNA (HUR RNA) was
purchased from Stratagene (La Jolla, CA).

Labeling and purification of targets Labeled cDNA for the long
oligonucleotide and cDNA arrays were synthesized and labeled by the
indirect amino-allyl method using reagents and protocols supplied with the
Stratagene FairPlay™ Microarray Labeling Kit. For cDNA synthesis, Strata-
script reagents (Stratagene) were used, and Cy3/Cy5 fluorophore amino-allyl
reagents were obtained from Amersham (Piscataway, NJ). For each synthesis,
20 µg of total RNA were used. Labeled cDNA targets were purified using
Minelute purification kits (Qiagen, Valencia, CA).

Hybridization and washing of arrays The cDNA and long
oligonucleotide microarrays were prehybridized in 40 µl of 5× SSC, 0.1%
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Table 1. Six cell lines assayed in experiment

Cell line Number of oligonucleotide arrays
(number with reference green/Cy3)

Number of cDNA arrays
(number with reference green/Cy3)

Cell line description

MCF10a 4 (2) 4 (2) Human mammary epithelial cell line
LNCAP 4 (2) 4 (2) Human prostate cancer cell line
L428 9 (4) 7 (4) Hodgkin’s disease cell line
SUDHL 4 (2) 4 (2) Human lymphoma cell line
OCILY3 5 (3) 5 (3) Human lymphoma cell line
Jurkat 4 (2) 4 (2) Human T lymphocyte acute T cell leukemia cell line
Total 30 (15) 28 (15)

SDS and 1% BSA at 42◦C for 30 min. The prehybridization solution was
removed and arrays were hybridized for 16 h at 42◦C in 5× SSC buffer con-
taining Cy3/Cy5 labeled targets, 25% formamide, 0.1% SDS, 1 µg Cot-1
DNA and 1 µg poly A RNA. The cDNA arrays were washed at room tem-
perature in 2× SSC, 0.1% SDS for 2 min, 1× SSC for 2 min, 0.2× SSC for
2 min and 0.05× SSC for 1 min. The long oligonucleotide arrays were treated
the same except for the omission of the last wash step. The slides were dried
by spinning at 650 r.p.m for 3 min.

Array scanning and image processing Long oligonucleotide and cDNA
arrays were scanned using Axon 4000B scanner at 10 µm resolution. Image
processing and quantification of signal values of spotted arrays were per-
formed using Genepix 3.0 software (Axon Instruments, Union City, CA).
The Genepix result files including signal, background, standard deviation,
pixel statistics and quality parameters of both channels were deposited in the
microarray database (mAdb) maintained by NCI/CIT bioinformatics group
(Greene et al., 2003).

Data analysis
For two dual-label experiments, one with cDNA arrays and the other with
printed oligonucleotide arrays, Stratagene universal human reference RNA
was used as a standard for testing with RNA from cell lines MCF10a, LNCAP,
L428, SUDHL, OCILY3 and Jurkat. All arrays were dye-swapped at least
twice. There were a total of 28 cDNA arrays and 30 oligonucleotide arrays.
Table 1 gives a description of the cell lines and experimental design.

Data were background corrected by subtracting the median background
pixel intensity from the mean foreground intensity, because the median back-
ground subtraction makes the tiny dust particles less significant and the mean
foreground is preferable to the median foreground for spots that lack signal
in the center, called doughnuts. Signals <100 were truncated to 100. Spots
flagged for poor quality were eliminated from the analysis and genes with
missing data were eliminated. The reason we eliminated genes with missing
data is that analyses with missing data may result in either inestimable para-
meters or significant power loss when compared with complete data. This
left 8604 of the 9069 genes on the cDNA arrays for analysis, and 15 790
of the 21 794 genes on the oligonucleotide arrays for analysis. Normaliza-
tions using both median centering of arrays and loess smoothing (Yang et al.,
2002) yielded very similar results. We present the median centering results
here (with the exception of Figure 4).

For each gene, the general analysis of variance model for the data was

Log2

[
Tcor

Rcor

]
= µ + Cc + Oo + COco + εcor , (1)

where Log2 is the base 2 logarithm, Tcor and Rcor are the background-
corrected, normalized intensity in the target (cell line) channel and the
reference channel, respectively; µ represents the overall mean log-ratio; Cc

are the cell line effects, for the six cell lines, representing differences in expres-
sion among the cell lines, c = 1, 2, . . . , 6; Oo are the orientation effects,
representing gene-specific dye bias, for each dye orientation (e.g. target

labeled with Cy3 or Cy5) o = 1, 2; COco are the cell line by orientation
interactions, representing the gene- and sample-specific dye bias; and εcor

is independent, normally distributed error. The usual parameter constraints
ensure identifiability (Cochran and Cox, 1992).

Equation (1) models the log-ratios instead of the log-intensities, as is often
done in microarray analysis of variance studies. But we have shown that the
log-ratio and log-intensity models are equivalent, and provided a one-to-one
mapping of the model parameters (Dobbin and Simon, 2005).

The analysis of variance tables for both experiments are given in Table 1 of
the Supplementary materials. Importantly the table provides strong evidence
that the sample sizes for this study are adequate, allowing 16 or more degrees
of freedom for error in each case, in contrast to previous studies that had
inadequate error degrees of freedom for robust gene specific analyses.

We believe that this dataset is most appropriately analyzed using general-
ized least squares (Carroll and Ruppert, 1982a,b; Pinheiro and Bates, 2000),
because many genes displayed large heteroscedasticity of error variance for
different cell lines (see Supplementary materials for further discussion and
motivation). However, since our goal is to characterize dye bias in as broad
a context as possible we have analyzed gene-specific dye bias using a wide
range of parametric, rank-based, and permutation-based analysis methods.
In addition, we have considered both median normalization and global loess
normalization, and further considered a range of parameter settings for the
loess normalization to ensure the robustness of these findings. In particular,
the loess smoothing parameter alpha (Cleveland et al., 1992), which controls
the degree of smoothing, was varied through the range 0.4–3.0, values outside
this range appearing to grossly over- or under-smooth.

RESULTS
We analyzed dual-label microarray data from both a cDNA experi-
ment and an oligonucleotide experiment.

Gene-specific dye bias
First we consider the cDNA experiment. We analyzed the normal-
ized, background-corrected data separately for each gene. Table 2
shows the results of multiple analyses of the data. In assessing
gene-specific dye bias, we considered three approaches:

(1) Make no adjustment for cell line heterogeneity;

(2) Make an adjustment only for differences in the mean or median
expression in the different cell lines;

(3) Make adjustment for both differences in the mean expression
in the different cell lines and for differences in the variances
of expression in the different cell lines.

These analyses can be viewed as covering a range from most naïve
(1) to least naïve (3). In Equation (1), the P -values in Table 2
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Table 2. Analyses of gene-specific dye bias

Cell line heterogeneity
taken into account?

Cell line main
effects adjustment

Significance test Number of genes with
gene-specific P -value < 0.001

Median absolute value of
dye bias for significant genes

No None Pooled t-test 893 (10%) 0.28 (1.2-fold)
Welch t-test 869 (10%) 0.28 (1.2-fold)
Wilcoxon rank–sum test 901 (10%) 0.43 (1.3-fold)
Permutation testa 1014 (12%) 0.67 (1.6-fold)

Location (mean/median) Mean-centering Pooled t-test 2035 (24%) 0.57 (1.5-fold)
heterogeneity only Welch t-test 1932 (22%) 0.58 (1.5-fold)

Wilcoxon rank–sum test 2015 (23%) 0.54 (1.5-fold)
Permutation testa 2281 (27%) 0.56 (1.5-fold)

Median-centering Pooled t-test 1806 (21%) 0.58 (1.5-fold)
Welch t-test 1679 (20%) 0.59 (1.5-fold)
Wilcoxon rank–sum test 1758 (20%) 0.48 (1.4-fold)
Permutation testa 2229 (26%) 0.56 (1.5-fold)

Location and scale (variance) Mean-centering Generalized least squaresb 3388 (39%) 0.46 (1.4-fold)
heterogeneity Permutation testc 3310 (38%) 0.47 (1.4-fold)

Expected by chance 9 (0.1%)

Using notation from Equation (1), let Ycor = log2[Tcor/Rcor]. Mean-centering corresponds to the transformation Zcor = Ycor − Ȳc••, where Ȳc•• is the mean over the cell line;
similarly, median-centering is Wcor = Ycor − Ỹc••, where Ỹc•• is the median over the cell line. T -tests have the form (Ȳ•1• − Ȳ•2•)/SD, where SD is the estimated standard deviation
of the numerator, and W or Z are inserted for Y as appropriate. SD is estimated under the assumption of equal variance for the pooled t-test, and unequal variances for the Welch
t-test. Wilcoxon rank–sum test indicates the Wilcoxon two-sample test performed on the Y s, W s or Zs as appropriate. Permutation tests are based on pooled t-statistics with 10 000
permutations except as noted.
a Permutation test based on 10 000 permutations of the dye labels.
b Generalized least squares model fit with different error variance for each cell line stratum. P -values calculated via restricted maximum likelihood used to fit the model and conditional
F -tests used to assess significance. Likelihood-ratio tests with maximum-likelihood estimates (not shown) produced virtually identical results.
c Permutation test based on 10 000 permutations of the dye labels within cell lines. Test statistic used is weighted sum of t-test numerators, with weights equal to inverse estimated
variance for cell line t-test numerator.

corresponds to the statistical hypothesis test that each of the Oo

orientation effects terms is zero.
First, note that in all the analyses in Table 2, the number of genes

which display statistically significant dye bias is much greater than
the number expected by chance; the number of genes range from 869
to 3388, whereas only 9 are expected by chance. Second, note that for
a given approach to cell line heterogeneity adjustment (i.e. either no
adjustment, adjustment for location differences only or adjustment
for both location and scale differences), the extent of the dye bias is
extremely similar across a range of analytic techniques, from t-tests to
rank-sum tests to permutation tests. If no cell line adjustment is made
dye bias is observed in 10–12% of genes; if only a location cell line
adjustment is made dye bias is observed in 20–27% of genes; if both
location and scale cell line adjustment is made dye bias is observed
in 38–39% of genes. In all cases, the percentage of gene-specific dye
bias genes greatly exceeds the percentage expected by chance.2

Results as to the overall extent of dye bias were very similar for
loess normalization under a range of different parameter settings for
the loess fit (Table 4 of Supplementary material).

Table 2 also presents data on the size of the gene-specific dye
bias for the statistically significant genes (rightmost column). In
Equation (1), these correspond to the estimated Ôo values from the

2That is, the number expected to be observed at this significance level if, in
fact, no genes are differentially expressed. This expected number generally
depends on the number of genes on the array and the statistical test assump-
tions, but not on the correlation structure among the genes. Refer Dobbin and
Simon (2005) and Supplementary section 2 for an example of how correlation
does not impact the calculation of expected number.

Table 3. cDNA agreement between models with and without gene-specific
dye bias adjustments included

All data: no dye bias adjustment
P -value < 0.001 P -value > 0.001

All data: P -value < 0.001 4801 (56%) 559 (6%)
dye bias adjustment P -value > 0.001 81 (1%) 3163 (37%)

P -values are for the F -test of no differential expression among any of the six cell lines.
‘Dye bias adjustment’ P -values are from fitting the model Log2[Tcor/Rcor] = Cc +Oo +
εcor and ‘no dye bias adjustment’ P -values are from fitting the model Log2[Tcor/Rcor] =
Cc + εcor . The P -values are from the hypothesis test that each Cc is zero.

model fit. The median effect size of the dye bias for genes which
display dye bias ranges from 1.4-fold to 1.5-fold for the non-naïve
analyses (with location only or location and scale adjustment). In
the generalized least squares analysis, 125 (1.5%) of the genes have
an estimated gene-specific dye bias >2-fold, and one gene has an
estimated gene-specific dye bias >4-fold.

To assess the impact of gene-specific dye bias on inferences about
the cell lines, we fit a model that only accounted for differences
between the cell lines (ignoring gene-specific dye bias), and a model
that accounted for both differences between the cell lines and gene-
specific dye bias, to compare the results. In particular, we used
generalized least squares to fit the model Log2[Tcor/Rcor] = Cc +εcor

and the model Log2[Tcor/Rcor] = Cc +Oo +εcor. If the gene-specific
dye biases (represented by Oo) are trivial, then the two models should
lead to nearly identical statistical inference. Agreement between
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Fig. 2. Each plot shows the estimated expression effect sizes for all 8604 genes for one of the six cell lines. x-axis is the estimated effect sizes using all the
arrays. y-axis is the estimated effect sizes using only the forward-labeled arrays. Drawn on the plots are a 45◦ line through the origin and lines ±1 above and
below this line. Top row is MCF10a, LNCAP and L428 (left to right) and bottom row is SUDHL, OCILY3 and Jurkat. Pearson correlations are 0.91, 0.92,
0.87, 0.84, 0.86 and 0.94.

the P -values from the overall F -tests of any differential expression
among the cell lines is shown in Table 3; each F -test tests the
hypothesis that all the Cc cell line main effects terms are zero. For
4801 genes (56%) both models indicated that gene expression varied
among all lines. For 3163 genes (37%) both models indicated that
gene expression did not vary across all lines. The models gave dis-
crepant results for 640 genes (7%), i.e. one model found there was
significant differential expression and the other found that there was
no significant differential expression among the cell lines. For 559
genes (6%), the model with gene-specific dye bias found the genes
significantly differentially expressed and the model without gene-
specific dye bias found them not significant; so the dye bias appears
to have masked the true differential expression. For 81 genes (1%),
the discrepancy was in the opposite direction, so the dye bias appears
to have led to ‘false-positive’ detection of differential expression for
these genes. The observed imbalance in discrepancies is to be expec-
ted because for nearly balanced data like this, gene-specific dye bias
will tend to mask true gene-expression differences rather than create
‘false-positives.’

The results were very similar for the oligonucleotide arrays (see
Supplementary material). While the higher proportion of filtered
genes on the oligonucleotide arrays (∼28% versus∼5% on the cDNA
arrays) results in greater uncertainty as to the true extent of dye bias
on this platform, the overall similarity of dye bias we observed on
both platforms suggests that filtered genes may not systematically
differ from unfiltered genes with regard to dye bias.

Gene- and sample-specific dye bias
We next consider gene- and sample-specific dye bias. Based on the
high concordance across analytic methods for the gene-specific dye
bias, we restrict presentation to the generalized least squares analysis.

There appear to be far fewer genes with significant gene- and
sample-specific dye bias than there were with gene-specific dye bias.

But there do appear to be more genes with gene- and sample-specific
dye bias than we would expect by chance. There were 1029 genes
withP -values < 0.05, as compared with 430 expected by chance; and
there were 150 with P -values < 0.001, as compared with 9 expected
by chance.

Comparing the gene-specific dye bias to the gene- and sample-
specific dye bias,3 we find 3388 genes with gene-specific P -value <

0.001 compared with 150 genes with gene- and sample specific
P -value < 0.001. The relative sizes of the bias for the significant
genes was similar; the 3388 genes with significant gene-specific
dye bias P -value < 0.001 had bias with median absolute value 0.46
(1.4-fold), whereas the 150 genes with gene- and sample-specific
dye bias had bias with median absolute value 0.27 (1.2-fold).

One test of the importance of the gene- and sample-specific dye
bias on statistical inference is to compare the estimated differences in
gene expression between the cell lines using all the dye swap arrays
with those same estimates using only arrays with one labeling (e.g.
with Stratagene labeled Cy3). Figure 2 shows plots of the estim-
ated sizes of the differences in expression between each of the six
cell lines and the overall average of the cell lines across the 8604
genes, using both the full dataset with all 28 arrays and using only
the subset of 15 arrays that were all run with the same orientation
(Stratagene labeled with Cy3/green dye). The estimates fall close to
a 45◦ line through the origin, indicating good agreement between the
dye swap estimates and the forward-only estimates. Table 4 shows
the numbers of discrepancies that are large in estimated size when
using the full dataset versus using only the forward-labeled arrays. In

3Gene-specific dye bias estimates represent the average amount by which
one channel tends to show up brighter than the other. When gene- and
sample-specific dye bias is also present, this overall trend in the average is
supplemented by a sample-specific trend, so that the dye bias may be different
in size or direction for a particular cell line.
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Table 4. Numbers of large discrepancies between cell line effect size
estimates based on the full dataset compared with estimates based on the
forward-only arrays

Total estimated
cell line effects

Number with
discrepancy >1

Number with
discrepancy >2

MCF10a 8604 20 (0.2%) 0
LNCAP 8604 4 (0.05%) 0
L428 8604 42 (0.5%) 4 (0.05%)
SUDHL 8604 29 (0.3%) 0
OCILY3 8604 50 (0.6%) 5 (0.06%)
Jurkat 8604 22 (0.3%) 0

all cases, <1% of genes display estimated discrepancies >1 (2-fold).
Very similar results were obtained when: (1) estimates derived from
only the forward run arrays were compared with those derived from
only the backward run arrays; (2) the oligonucleotide arrays were
examined (Supplementary material).

In conclusion, although there is some evidence that gene- and
sample-specific dye bias may exist for a subset of genes, the impact
of this bias on estimated differences between gene expressions in the
cell lines appears to be minor.

Autofluorescence
We investigated the potential that dye bias was related to spot bright-
ness by breaking down the dye bias estimates into groups based
on median intensity of the Cy3/green dye. Since the experiments
are nearly balanced, median intensity in the Cy3/green channel
serves as a measure of the median amount of cDNA present across
samples. Figure 3 shows the results. The significantly increasing
trend suggests that a component of dye bias may be attributable
to post-normalization median intensity-related effects. Interestingly,
global loess normalization, which is designed to address intensity-
dependent dye bias on an array-by-array basis, reduced this phe-
nomenon slightly but did not eliminate it; in fact, loess resulted in a
reversal of the direction of the apparent bias (Fig. 4), suggesting the
loess methodology was overadjusting the data.

The observed relation between dye bias and spot intensity may be
partly attributed to the phenomenon of autofluorescence. Autoflur-
oescence is the tendency of unlabeled cDNA to fluoresce brighter at
the lower Cy3/green frequency. Papers have been published describ-
ing this phenomenon (Eisinger and Shulman, 1968; Onidas et al.,
2002; Raghavachari et al., 2003). Further discussion appears in the
Supplementary section.

Cross-platform comparison of gene-specific
dye bias on cDNA and oligonucleotide arrays
Unigene identifiers were used to match genes across platforms. 6056
genes were matched in this way. When multiple oligonucleotide
70mers matched the same cDNA, the first match was used. Table 5
shows that there was minimal agreement across platforms as to the
size and direction of gene-specific dye bias for different genes (cor-
relation 0.12), whereas there was significant agreement as to the
size and direction of cell line effects for different genes, indicating
that the unigene identifiers are adequately matching corresponding
genes on the different platforms. Similarly, agreement across plat-
forms based on a P -value cutoff of 0.001 was much smaller for

Fig. 3. Size of the estimated dye bias as a function of median intensity in the
green (Cy3) channel. 1st Q indicates genes with median normalized intensity
in the first (lowest) quartile of genes; 2nd Q indicates genes in the second
quartile, etc. The brighter the median green channel intensity, the greater the
gene-specific dye bias in the direction of the samples with target labeled green
(Cy3)—which is the positive direction in this figure.

Fig. 4. Loess normalized data: size of the estimated dye bias as a function of
median intensity quartile in the green (Cy3) channel. The pattern suggests that
loess normalization does not remove the dye bias, and appears to over-adjust
the data for intensity-dependent dye bias.

dye bias effects than for cell line effects. Cross-platform concord-
ance of gene-specific dye bias might be expected to increase under a
more sophisticated feature-matching methodology, e.g. one that uses
oligonucleotide sequence information to verify the correct cDNA
match (Mecham et al., 2004); but the relatively good concordance of
cell lines indicates that overall gene-specific dye bias concordance
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Table 5. Concordance across platform of gene-specific dye bias and of cell
line effects

Source of effect Cross-platform
correlation between
average gene effects

Cohen’s Kappa based
on 2 × 2 table using
0.001 P -value cutoff

Dye bias 0.12 0.06 (0.03, 0.08)
MCF10a 0.74
LNCAP 0.72
L428 0.66 0.30 (0.28, 0.32)
SUDHL 0.69
OCILY3 0.64
JURKAT 0.71

Cross-platform agreement between gene-specific effects of dye bias, and each of the
individual cell line effects, as measured by pairwise Pearson correlation of the effect
estimates, and Cohen’s Kappa statistic for 2 × 2 tables created by using P -value cutoff
of 0.001 for F -tests. Agreement based on 6056 genes matched using unigene identifiers.
For genes with multiple sequences represented on the oligonucleotide arrays, the first
sequence in the file was used. Format of Cohen’s kappas is: Kappa value (95% confidence
interval). 2 × 2 tables appear in Table 5 of Supplementary material.

would probably remain minimal. In conclusion, there is some weak
concordance across platforms of gene-specific dye bias.

DISCUSSION
We have analyzed data from both an oligonucleotide and a cDNA
microarray experiment to characterize dye bias. We have shown
that many genes exhibit statistically significant gene-specific dye
bias (39% with P -value < 0.001 on the cDNA arrays), and tend
to appear brighter on average in one dye compared with the other.
Gene-specific dye bias was small for the most part, but not insigni-
ficant, suggesting that when samples labeled with different dyes are
being compared, statistical adjustment for this type of dye bias seems
advisable. We showed that failure to adjust for dye bias does affect
conclusions about differential expression.4 In particular, designs,
such as the reference design given in Figure 1a and the balanced
block design given in Figure 1c appear superior to designs, such
as that given in Figure 1b, because the design of Figure 1b makes
it impossible to correct for gene-specific dye bias. The other two
designs produce class comparisons free of gene-specific dye bias.
More examples of designs that allow one to correct for this type of
dye bias can be found in Dobbin et al. (2003a).

Gene- and sample-specific dye bias appeared statistically signi-
ficant for a much smaller proportion of genes (2% with P -value <

0.001), although still higher proportion than would be expected by
chance. Estimated gene-expression differences between the cell lines
produced by analysis of only the forward arrays (with reference
labeled Cy3), only the backward arrays (with reference labeled Cy5)
and all dye swapped arrays, were very similar in direction and mag-
nitude, indicating that gene- and sample-specific dye biases have a
minor impact on these estimates. Thus, gene- and sample-specific
dye bias appeared to be of little practical concern. We also noted
that no experimental design or statistical analysis will enable one to

4See the supplemental material for some discussion of why the high propor-
tion of genes with gene-specific dye bias produced so little discordance in
differential expression calls.

remove this type of dye bias (as discussed in the Results section).
Instead, gene- and sample-specific dye bias, if it exists, indicates a
limitation of the accuracy of the technology for a subset of genes. In
particular, gene- and sample specific dye bias does not justify sys-
tematically dye swapping all arrays in an experiment, because such
a design will not enable one to eliminate the bias. This type of design
has also been shown to be inefficient (Dobbin et al., 2003a).

While we have established the existence of gene-specific dye bias
and to a lesser extent, gene- and sample-specific dye bias, the causes
of these phenomena remain unclear. For instance, what aspect of the
gene-sequence spotted on an array causes the dye bias? Is it the actual
sequence of the nucleotides, the order in which the spot was printed
(Mary-Huard et al., 2004), the size or shape (morphology) of the spot,
autofluorescence, an inadequacy of the linear additive model used to
approximate the data or something else? If dye bias is chiefly related
to how the arrays were constructed (location of spots, printing order,
size, etc.), then one would expect that the bias would be consistent
across a set of arrays with the same construction, which would result
in gene-specific dye bias. The fact that the gene-specific dye bias
showed so little concordance across the two platforms that we ana-
lyzed suggests that dye bias may be chiefly related to aspects of the
array construction and therefore, it is important to use a homogeneous
set of arrays for any microarray experiment, and to make dye bias
correction within array type if different types or versions of arrays
are used. Dye bias related to aspects of the original RNA samples
would result in gene- and sample-specific dye bias. The fact that we
observed such a small level of this type of bias suggests that most
dye bias is not attributable to aspects of the original RNA samples.

These results have implications for single-label array experiments,
such as Affymetrix arrays, if the labeling and scanning techno-
logy is the same as or similar to that used here. Gene-specific dye
biases will not affect inference in single-label experiments for the
same reason that they do not affect inference in reference design
experiments when comparing non-reference samples. But gene- and
sample-specific dye biases will affect inference in both dual-label
and single-label systems. The problematic nature of removing the
gene- and sample-specific bias is not improved under a single-label
system. The fact that gene- and sample-specific biases are more diffi-
cult to detect in single-label systems should not be taken as evidence
of the superiority of single-label systems with regard to gene- and
sample-specific dye bias. The potential problem of gene- and sample-
specific dye bias is still there, although, as we have shown, it appears
to have a relatively minor impact on estimates of interest.
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