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Abstract
Background: DNA microarray technology provides a powerful tool for characterizing gene expression
on a genome scale. While the technology has been widely used in discovery-based medical and basic
biological research, its direct application in clinical practice and regulatory decision-making has been
questioned. A few key issues, including the reproducibility, reliability, compatibility and standardization of
microarray analysis and results, must be critically addressed before any routine usage of microarrays in
clinical laboratory and regulated areas can occur. In this study we investigate some of these issues for the
Applied Biosystems Human Genome Survey Microarrays.

Results: We analyzed the gene expression profiles of two samples: brain and universal human reference
(UHR), a mixture of RNAs from 10 cancer cell lines, using the Applied Biosystems Human Genome Survey
Microarrays. Five technical replicates in three different sites were performed on the same total RNA
samples according to manufacturer's standard protocols. Five different methods, quantile, median, scale,
VSN and cyclic loess were used to normalize AB microarray data within each site. 1,000 genes spanning a
wide dynamic range in gene expression levels were selected for real-time PCR validation. Using the
TaqMan® assays data set as the reference set, the performance of the five normalization methods was
evaluated focusing on the following criteria: (1) Sensitivity and reproducibility in detection of expression;
(2) Fold change correlation with real-time PCR data; (3) Sensitivity and specificity in detection of
differential expression; (4) Reproducibility of differentially expressed gene lists.

Conclusion: Our results showed a high level of concordance between these normalization methods. This
is true, regardless of whether signal, detection, variation, fold change measurements and reproducibility
were interrogated. Furthermore, we used TaqMan® assays as a reference, to generate TPR and FDR plots
for the various normalization methods across the assay range. Little impact is observed on the TP and FP
rates in detection of differentially expressed genes. Additionally, little effect was observed by the various
normalization methods on the statistical approaches analyzed which indicates a certain robustness of the
analysis methods currently in use in the field, particularly when used in conjunction with the Applied
Biosystems Gene Expression System.
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Background
DNA microarray technology provides a powerful tool for
characterizing gene expression on a genome scale. While
the technology has been widely used in discovery-based
medical and basic biological research, its direct applica-
tion in clinical practice and regulatory decision-making
has been questioned [1,2]. A few key issues, including the
reproducibility, reliability, compatibility and standardiza-
tion of microarray analysis and results, must be critically
addressed before any routine usage of microarrays in clin-
ical laboratory and regulated areas can occur. Considera-
ble effort has been dedicated to investigate these
important issues, most of which focused on the compati-
bility across different laboratories and analytical methods,
as well as the correlation between different microarray
platforms. In this study we investigate some of these issues
using the Applied Biosystems Human Genome Survey
Microarrays.

The microarrays contain 31,700 60-mer oligonucleotide
probes representing 29,098 individual human genes, and
uses chemiluminescence (CL) to identify and measure
gene expression levels in cells and tissues. In addition to
the unique 60-mer probe, an internal control probe (a 24-
mer oligonucleotide) is co-spotted with the 60-mer probe
on the microarray and labeled with a complementary
oligo containing the fluorescent LIZ® dye (FL) during the
hybridization of the microarray.

In this study, we analyzed the gene expression profiles of
two human tissues: brain and universal human reference
sample (UHR). Five technical replicates in three different
sites were performed on the same total RNA samples
according to manufacturer's standard protocols. Five dif-
ferent methods, quantile [3,4], median [5], scale[6,7],
VSN [8] and cyclic loess [6] were used to normalize AB
microarray data within each site. Since fold change and
variance dependency with intensity is platform dependent
[16] we were interested in evaluating the performance of
these methods applied to AB microarray data, making this
study the first one from this perspective. We restricted our
attention on these five methods for the following reasons.
These methods are most frequently used normalization
methods for AB microarray data. In addition, the microar-
rays used in this study contain one probe for each gene
(for most of the cases), this design restricting the number
of normalization methods to be used and making meth-
ods based on replicated measurements for each gene
(RMA, Plier etc.) inapplicable. Other normalization meth-
ods that would also be inapplicable include those explic-
itly developed for two color technology, or replicated
measurements.

1,000 genes spanning a wide dynamic range in gene
expression levels were selected for real-time PCR valida-

tion. Using the TaqMan® assays data as the reference set,
the performance of the five normalization methods was
evaluated focusing on the following criteria: (1) Sensitiv-
ity and reproducibility in detection of expression; (2) Fold
change correlation with real-time PCR data; (3) Sensitivity
and specificity in detection of differential expression; (4)
Reproducibility of differentially expressed gene lists. The
data set analyzed in this manuscript has been reported
elsewhere [9] and made publicly available via GEO acces-
sion number GSE5350 using the platform GPL 4097 for
TaqMan® assays data and GPL 2986 for Applied Biosys-
tems Human Genome Survey Microarrays data.

Results
Target selection for real-time PCR validation
In order to conduct a comprehensive survey of the arrays'
performance, gene targets for real-time PCR validation
were selected based on the following criteria: (1) Ensure a
large enough number of validation targets to provide rep-
resentative overviews of the microarray performance; (2)
Select genes spanning a wide range of expression levels
and (3) fold changes (Figure 1). 1000 TaqMan® Gene
Expression Assays were used in this study, covering 997
genes (3 genes had more than one assay) [[9], MAQC
project]. Over 90% of these genes were selected from a
subset of 9,442 RefSeq common to the various microarray
platforms (Affymetrix, Agilent, GE Healthcare, and Illu-
mina). This selection was designed so that the genes
would cover the entire intensity and fold change ranges
and include any bias due to RefSeq itself. A subset of
(~100) genes were included based on tissue-specificity
(UHR versus Brain).

Sensitivity and reproducibility in detection of expression
The dynamic range for the AB microarray platform spans
3–4 orders of magnitude [10], while TaqMan based real-
time PCR can achieve 7–8 orders of magnitude dynamic
range [11,12]. The larger dynamic range imparts TaqMan®

assays with higher detection sensitivity (limit of detection
~1–5 copies per reaction [11]); we therefore used the Taq-
Man® assays data set as the reference set to evaluate the
performance of microarrays in terms of detection sensitiv-
ity and accuracy. First, genes that are detectable (positives:
above detection threshold) and not detectable (negatives:
below detection threshold) were determined for each
sample according to manufacturer's recommendations
(see Methods for detailed descriptions). Figure 2 shows
the relationship between percent genes detected by the
microarrays out of the ones detected by TaqMan® assays as
a function of CT measurement (number of template tran-
script molecules is inversely related to CT-the more tem-
plate transcript molecules at the beginning, the lower the
CT). Gene expression levels were ordered according to
TaqMan® assay measurements (average Ct within each
sample). A sliding window containing 100 consecutive
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genes was constructed and moved one gene at a time to
cover the whole range of Ct values. Within each sliding
window, the percent of genes detected as present in at
least half of the replicates of individual samples by the
microarray platform was computed out the total of those
detected by TaqMan® assays, and plotted as a function of
mean CT value of the 100 genes in the given window. The
overall sensitivity (True positive Rate (TPR)) and specifi-
city (1-False Positive Rate (FPR)), are presented in Table 1,
and are 76.6% and 81.3%, respectively in the UHR sample
measured in test site 1.

For each normalization method, the impact on signal
level was determined using genes detected by TaqMan®

assays (Figure 3). There are almost no differences in the
signal levels when each of these normalization methods is
used with the exception of VSN which results in a small
increase in signal level for low expressing genes. We also
used coefficients of variation (CV) of log2(signal) to eval-
uate the effect of the 5 normalization methods on signal
reproducibility, both within and between sites (Figure 4
and 5). Reproducibility of technical replicates for the five
normalization approaches for site 1 is illustrated in Figure
4 for both brain and UHR samples. Panel A, where all
29,069 genes are represented, shows the coefficient of var-
iation (CV) across the 5 technical replicates, as a function
of expression level when the data is normalized using the
quantile approach. Panel B shows the coefficients of vari-
ation, only for genes with TaqMan® assays as a function of
TaqMan CT. Lines represent the lowess smoothing fitting
curves [13] of all data points from each normalization

method. As expected, CV's showed a strong dependence
on expression level, decreasing from 10% for low express-
ers or absent genes, to 1% for high expressers. All normal-
ization methods improved the coefficient of variation
observed in the raw data over the entire range of expres-
sion levels. A small improvement in reproducibility for
genes expressed at lower levels was observed in VSN nor-
malization, in both representations, and for both sam-
ples. Signal reproducibility between the 3 testing sites is
represented in Figure 5. Within sites CVs (dotted lines)
and between sites CVs (solid lines) of all 29,098 genes,
show similar trends for all five normalization methods.
The VSN normalization which showed some improve-
ment in within sites variability of low expression level
genes performed similarly to the other normalization
methods when between sites variability is considered.

Fold change concordance with TaqMan® assays
To evaluate the concordance of fold changes between
microarray and real-time PCR data, we performed regres-
sion analysis of fold differences between the UHR sample
(A) and brain sample (B). Fold change metrics are more
meaningful as they tend to cancel out systematic platform
biases in absolute signal values, moreover they are more
biologically relevant. Fold change (log2) was computed as
the difference in mean expression level of the five techni-
cal replicates measured within each site for each sample.
Genes were filtered based on real-time PCR detection
thresholds (detectable in at least 3 out of 4 technical rep-
licates in both samples) and only genes detected in both
samples (848) were used. Fold changes between brain and

Gene Selection: 1000 gene targets were selected for TaqMan® assay validation in order to span a wide dynamic range in expres-sion level and fold changesFigure 1
Gene Selection: 1000 gene targets were selected for TaqMan® assay validation in order to span a wide dynamic range in expres-
sion level and fold changes. Scatter plots between two technical replicates for UHR (A) and Brain (B) samples were shown for 
the 29,098 genes represented on AB microarrays. The 1000 gene targets are represented in red, and show a wide dynamic 
range of expression levels and fold change.

Signal UHR and Brain FC UHR vs. Brain
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UHR samples were estimated and plots between (log2)
fold changes determined from AB microarray data and
TaqMan® assays (ΔΔCt), are presented in Figure 6. The lin-
ear regression fitting curve for all data points was per-
formed for each scatter plot (Panel A). The R2, slope and
intercept for TaqMan® assays versus microarray data are
presented in Table 2. The 5 normalization methods used
for the microarrays showed similar linear correlation char-
acteristics with real-time PCR measurements with R2 val-
ues ranging between 0.73–0.75 and slopes ranging from
0.65 to 0.59 suggesting the existence of some ratio com-
pression in the microarray data. VSN showed slightly
higher compression than the other normalization meth-
ods, most likely caused by the higher signal levels they
impart for low expressers (as seen in Figure 3). A similar
fold-change comparison between the five normalization
methods and TaqMan® assays was also performed using
lowess smoothing (Figure 5, Panel B), which does not
assume a linear relationship of fold-change values
between platforms. The estimated range of fold changes
(on log2 scale), for TaqMan assays, is from -8 to 15, while
for AB microarrays is -4 to 10. In order to better under-
stand the cause of fold change compression additional
analysis was performed on genes with similar expression

levels in the two samples. Genes were binned into low/
medium/high according to TaqMan® assays CT measure-
ments (the CT cut-offs are set to 23:29:35). Only genes
having expression level in the same bin in both samples A
and B are included. Boxplots of the fold change for each
normalization method and TaqMan® assays are presented
in Figure 7. The range of fold changes measured by the
microarrays is significantly lower for low expression level
genes and somewhat lower for high expression level genes
when compared to the range of fold changes measured by
TaqMan® assays. For medium expression level genes, the
two platforms have a higher agreement on the magnitude
of fold differences between the 2 samples.

Sensitivity and specificity in detection of differential 
expression
We evaluated the performance of the different normaliza-
tion methods in detecting differential expression between
the two samples using multiple statistical approaches. Tra-
ditionally, analysis of accuracy is carried out by analyzing
the true positive rate (TPR) and false discovery rate (FDR).
In this case, the actual rates are unknown. For this reason,
we used TaqMan® as the reference platform. Only genes
detected by TaqMan® assays in both samples were used for

Detection concordance: 803 genes for sample A, and 744 genes for sample B are detected as present (CT < 35) for at least two of the TaqMan® assay replicatesFigure 2
Detection concordance: 803 genes for sample A, and 744 genes for sample B are detected as present (CT < 35) for at least two 
of the TaqMan® assay replicates. For each set of these genes, a sliding window containing 100 consecutive genes was con-
structed and moved one gene at a time to cover the whole range of Ct values. Within each sliding window, the percent of 
genes detected as present in at least half of the replicates of individual samples by AB microarray platform was computed and 
plotted as a function of mean CT value of the 100 genes in the given window.
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this section. Using the assay calls as the reference, we con-
structed contingency tables against microarray data, in
which the concordance was determined and both the P-
value significance of the t-test controlling false discovery
rate (FDR) at 5% level [14] (i.e. we expect that at most 5%
of the genes detected as differentially expressed to be false
findings), and fold-change directionality (up- or down
regulation) were taken into consideration. Specifically,
true positives (TP) are genes differentially expressed (sig-
nificant P value for the t-test) in both TaqMan® and micro-
array platforms with similar direction of the fold change;
true negatives (TN) are genes not differentially expressed
in both platforms; false positives (FP), consist of two sets

of genes: (i) genes not differentially expressed in TaqMan®

and differentially expressed in microarrays, or (ii) genes
differentially expressed in both platforms with opposite
fold change direction; false negatives (FN), genes differen-
tially expressed for TaqMan and not for microarrays.
Genes were first ranked according to their average CT
value in UHR and brain samples. For each bin of 50 con-
secutive genes (according to the ranking), we compare the
results from each normalization method with the ones
obtained with the TaqMan® Assays. TPR defined as TPR =
TP/(TP+FN), represents the percentage of genes detected
differentially expressed in microarray data out of the ones
detected by TaqMan® assays. FDR was defined as FP/(TP +

Signal concordance: genes detected (present) by TaqMan® assays are used to represent the relationship between expression lev-els measured by AB microarrays and TaqMan® assaysFigure 3
Signal concordance: genes detected (present) by TaqMan® assays are used to represent the relationship between expression lev-
els measured by AB microarrays and TaqMan® assays. The average log2(signal) of the 5 replicates from site 1 for all five nor-
malization methods are plotted as functions of gene expression level measured by TaqMan® assays. Lines represent lowess 
smoothing fitting curves to the set of data points corresponding to one normalization method.

Table 1: Detection concordance between AB microarrays and TaqMan® assays in UHR and Brain.

UHR, site 1 TP TN FP FN Sensitivity Specificity

TaqMan 789 59 0 0 100 100
AB microarrays 605 48 11 184 76.68% 81.36%

Brain, site 1 TP TN FP FN Sensitivity Specificity

TaqMan 744 104 0 0 100 100
AB Microarrays 581 79 25 163 78.09% 75.96%

For each platform, sample and site, a gene is declared detected (present) if it is detected according to the platform specifications, in more than half 
of the replicates. Concordance between detection calls are presented in these tables for UHR and Brain samples in site 1 (Sensitivity = true positive 
rate, Specificity = 1-false positive rate).
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FP), and represents the percentage of differentially
expressed genes detected only by the microarrays out of all
genes differentially expressed in microarrays. As shown in
Figure 8, at the highest expression level, all normalization
methods displayed reasonably good sensitivities: 70–75%
TPR; the performance drops as the expression level
decreases, and at the lowest expression level, the TPR is
~20% (Figure 8, panel A). The opposite trend can be seen
for the FDR plots (Figure 8, panel B): a relative constant
level of false findings (FDR 1–2%) was observed for genes
with high and medium expression levels (CT < 30), after
which FDR increases up to 25–30% for genes with low
expression level. The overall accuracy of each of the five
normalization methods is presented in Table 3. TPR and
FDR indicate that the performance of the microarray plat-
form is not dependent on the normalization method
used. The observed FDR of 7.1% is slightly higher than the

one expected from the FDR control we used to select dif-
ferentially expressed genes (5%), the 2% overestimate
(approximately 28 genes) being possibly explained by
genes incorrectly called differentially expressed by the
TaqMan® assays (since statistical tests are used to detect
differential expression for the TaqMan® Assays, errors are
expected to be introduced).

Additionally, we investigated four commonly used meth-
ods for identification of differentially expressed genes in
microarray data: simple t-test (p-value < 0.05), t-test com-
bined with fold-change (p-value < 0.05 and FC > 1.5), t-
test with FDR and FC control (FDR = 5% and FC < 1.5)
and SAM [15] (q-value < 0.05), to determine their impact
on the detection of differentially expressed genes. Only
data from site 1 was used for this case. Figure 9 shows TPR
and FDR plots comparing genes differentially expressed

Reproducibility within sites: coefficients of variation are used to evaluate the impact of the 5 normalization methods on data reproducibilityFigure 4
Reproducibility within sites: coefficients of variation are used to evaluate the impact of the 5 normalization methods on data 
reproducibility. (A) presents the CVs, of log2(signal), within site 1 for all 29,098 genes as a function of expression level meas-
ured by quantile normalization; (B) presents the CVs within site 1 for genes with TaqMan® assays as a function of TaqMan CT 
values. Lines represent lowess smoothing fitting curves of all data points from each normalization method.

A.

B.
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for each statistical method applied to each normalization
approach with TaqMan® data used as a reference as previ-
ously described (t-test controlling false discovery rate at

5% level). Table 4 presents the overall concordance for
Quantile normalized data. The performance of the five
methods does not change with the normalization method

Fold Change Concordance: fold change between UHR and brain, determined by each normalization method applied to AB micro-array data (y-axis) were plotted against those determined by TaqMan® Assays (x-axis)Figure 6
Fold Change Concordance: fold change between UHR and brain, determined by each normalization method applied to AB micro-
array data (y-axis) were plotted against those determined by TaqMan® Assays (x-axis). Genes were filtered based on real-time 
PCR detection thresholds (detectable in at least 3 out of 4 technical replicates in both samples). (A) linear regression lines (red 
solid lines) are presented in each plot. (B) lines represent lowess smoothing fitting curves to the 2550 data points (data from all 
three sites) of each normalization method.

A. B.

Variability between sites: coefficients of variation are used to evaluate the impact of the 5 normalization methods on data repro-ducibilityFigure 5
Variability between sites: coefficients of variation are used to evaluate the impact of the 5 normalization methods on data repro-
ducibility. One way (site) ANOVA is used to estimate variability within/between sites. CVs within sites (red dotted lines) and 
between sites (green solid lines) are plotted against quantile normalized data.

Quantile

UHR

Brain

Median Scale VSN loess

C
V

C
V

log2(signal)
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used. It is important, however, when interpreting these
results to take into consideration one particularity of this
experiment. The two samples compared, human brain
and UHR being extremely divergent tissue types, display
big differences in gene expression levels, and so the vast
majority of genes used (~90%) showed significant
changes (TaqMan® assays). From this perspective, it is
expected that FDR control, for genes found differentially
expressed by microarrays, will have little impact on FP
rates. This explains why the results obtained from the sim-
ple t-test and the t-test with FDR control are very similar.
In a previous comparative study [16]) where samples with
smaller differences were used, we have seen that these two
methods show bigger differences in specificity. On the
other hand, restrictions on the magnitude of fold change
reduce both the number of true positives and false posi-
tives. Finally, SAM produces even more specific results (as
expected) penalizing some of the low expressers that the
TaqMan® assays find differentially expressed.

Reproducibility of differentially expressed gene lists
A fundamental step in most microarray experiments is
determining lists of differentially expressed genes that dis-

tinguish biological conditions. Reproducibility of differ-
entially expressed genes across highly similar experiments
is one of the important aspects of assessing reliability of
microarray results (9, MAQC study). We used Percentage
of Overlapping Genes (POG) between differentially
expressed genes lists as the measure of reproducibility [9].
For each testing site and each normalization method, we
declared genes differentially expressed again using t-test
and controlling FDR at 5% level. In this way, for each site
we generated a list of differentially expressed genes. Figure
10 shows the overlap between these lists of genes for each
normalization method. Table 5 summarizes both percent-
ages and counts of gene overlapping between either pairs
of sites or all three sites. One can see that the POG
obtained from different normalization methods are simi-
lar, ranging from 69.87% (for scale normalized data) to
74.01% (for data loess normalized) when all three sites
are compared. Site 2 shows some differences compared to
the other two sites, while the comparison between sites 1
and 3 shows consistently 83% POG. Very similar results
were observed when the other 4 statistical methods were
used for generating gene lists for microarray data (data not
shown). It is also important to note that no genes showed

Table 2: Fold change concordance: linear regression parameters.

Quantile Median Scale VSN Loess

Intercept -0.095 -0.111 -0.154 -0.127 -0.168
Slope 0.639 0.641 0.646 0.589 0.640
R2 0.744 0.745 0.744 0.734 0.744

Fold Change Compression: Genes were binned into low/medium/high according to TaqMan® assays CT measurements (the cut-offs are set to 24:29:35)Figure 7
Fold Change Compression: Genes were binned into low/medium/high according to TaqMan® assays CT measurements (the cut-
offs are set to 24:29:35). Only genes having expression level in the same bin in both sample A and B are included. Boxplots of 
fold changes for each normalization method and TaqMan assays are presented.
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discordant results between brain and UHR, i.e. a signifi-
cant fold change in opposite direction, when different
normalization methods were used.

Discussion
One unanswered question in the microarray field has
always been the effect of various normalization as well as
statistical methods on the end results of a profiling exper-
iment and more explicitly whether using different nor-
malization or statistical approaches results in different
gene lists of less concordance between different micro-
array platforms. In this study we have assessed the per-
formance of five different normalization methods using

the Applied Biosystems Expression Array System. Our
results show a high level of concordance between these
normalization methods. This is true, regardless of whether
signals, variation or fold change measurements were inter-
rogated. In addition, these five normalization methods
showed similar performance of signal reproducibility
between the three testing sites used for this study. Further-
more, we used TaqMan® assays as a reference, to generate
TPR and FDR plots for the various normalization methods
across the assay range (Figure 8). TPR was directly corre-
lated to gene expression levels whereas FDR was inversely
correlated. This is not completely surprising as the two
platforms have different dynamic ranges and sensitivity

Table 3: Significantly differentially expressed genes concordance.

TP TP rate TN FP FDR FN

TaqMan 2283 0 261 0 0 0
Quantile 1415 61.98 140 101 7.14 888
Median 1374 60.18 142 99 7.79 929
Scale 1354 59.31 144 97 7.76 949
VSN 1393 61.02 142 99 7.69 910
Loess 1402 61.41 139 102 7.84 901

Genes detected in both samples by TaqMan® assays (761) are used for this comparison. t-test is used to detect significantly differentially expressed 
genes, controlling FDR at 5% level. We compare the results from each normalization method, for all sites, with the ones from TaqMan® assays 
keeping track of up/down regulation in each platform.

Significantly differentially expressed genes concordance: genes detected in both samples by TaqMan® assays were first ranked according to their average CT value in UHR and brainFigure 8
Significantly differentially expressed genes concordance: genes detected in both samples by TaqMan® assays were first ranked 
according to their average CT value in UHR and brain. We use t-test to detect significantly differentially expressed genes, con-
trolling FDR at 5% level. For each bin of 50 consecutive genes (according to the ranking), we compare the results from each 
normalization method with the ones from TaqMan® assays. We keep track of up/down regulation in each platform. TPR repre-
sent the percentage of genes detected differentially expressed in microarray data out of the ones detected by TaqMan assays. 
FDR was defined as FP/(TP + FP), where FP is false positive in microarray data, and represents the percentage of differentially 
expressed genes detected only by microarray out of all genes differentially expressed in microarray.

TaqMan® Assays CT TaqMan® Assays CT
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levels, with the detection levels of the microarrays being
lower than those of TaqMan® assays. These differences
more than likely explain the lower TP rates and higher FP
rates for the genes at the low expression levels. These
effects were also observed for several other microarray
platforms in a separate study [17]. One conclusion of this
study is that, at least for the microarray platform tested in
this study, the current normalization approaches have lit-
tle impact on the signal, detection levels as well as TP and
FP rates in detection of differentially expressed genes.
These results are consistent with the findings of the
MAQC study ([18,19]). In addition we also explored the

contribution of several statistical approaches commonly
used in the field on the TP and FP rates. As expected in this
case, with approaches which relax the stringency in differ-
ential expression, better detection and differential expres-
sion concordance is observed, concomitant with a higher
percentage of false positives. At the opposite end of the
spectrum, FDR control and SAM methods, which are
more restrictive in detection of differential expression,
produce gene lists with fewer false positives. SAM, as
expected, shows a reduced number of false positives for
low expressers, at the expense of missing some differen-
tially expressed genes. The expected percentage of false

Table 4: Differential expression t-test, t-test + FDR, t-test + FC, t-test + FDR + FC cut, SAM applied to Quantile normalized data.

Method TP TP rate TN FP FDR FN

TaqMan 763 0 85 0 0 0
p-t test 558 73.13 55 30 5.10 205
p-t test + FDR 549 71.95 56 29 5.02 214
p-t test + FC 483 63.30 64 21 4.17 280
p-t test 
+FDR+FC

479 62.78 64 21 4.20 284

SAMq 508 66.58 63 22 4.15 255

We use different methods to detect significantly differentially expressed genes for data Quantile normalized: (1) t-test (p-value < 0.05), (2) t-test 
controlling FDR at 5% level, (3) t-test (p-value < 0.05) and FC < 1.5, (4) t-test controlling FDR at 5% level and FC < 1.5, or (5) SAM q < 0.05. We 
compare the results for data generated by site 1, from each normalization method, with the ones from TaqMan® assays for which differential 
expression is detected using t-test and controlling FDR at 5% level. We keep track of up/down regulation in each platform.

Differential expression t-test, t-test + FDR, t-test + FC, t-test + FDR + FC cut, SAM applied to Quantile normalization: we use different methods to detect significantly differentially expressed genes for different normalization methods: (1) t-test (p-value < 0.05), (2) t-test controlling FDR at 5% level, (3) t-test (p-value < 0.05) and FC < 1.5, (4) t-test controlling FDR at 5% level and FC < 1.5, or (5) SAM q < 0.05Figure 9
Differential expression t-test, t-test + FDR, t-test + FC, t-test + FDR + FC cut, SAM applied to Quantile normalization: we use different 
methods to detect significantly differentially expressed genes for different normalization methods: (1) t-test (p-value < 0.05), 
(2) t-test controlling FDR at 5% level, (3) t-test (p-value < 0.05) and FC < 1.5, (4) t-test controlling FDR at 5% level and FC < 
1.5, or (5) SAM q < 0.05. We compare the results for data generated by site 1, from each normalization method, with the ones 
from TaqMan® assays for which differential expression is detected using t-test and controlling FDR at 5% level. We keep track 
of up/down regulation in each platform.

Quantile Median Scale VSN loess

TaqMan® Assays CT
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positives in these lists is close to the one observed when
comparing results to TaqMan® assays. Unfortunately, it
seems that the full strength of these statistical methods is
obscured by the fact that the majority of the genes chosen
for TaqMan® validation show significant fold changes
between samples, minimizing the effect of FDR on the FP
rate. More importantly however, applying the different
normalization approaches to the various statistical meth-
ods tried, had no significant impact on identifying differ-
entially expressed genes.

Finally, when comparing the overlap in gene lists gener-
ated by each of these statistical methods, a concordance of
69.7–74.01% was observed between all three sites, and
82.4–83.8% between sites 1 and 3, indicating little effect
of the analysis approach used on the final gene list
obtained. This result is, however, sensitive to the cut-offs
used in determining the gene lists and can affect the
degree of overlap observed [9]. We were pleasantly sur-

prised, however, of the little effect observed by the various
normalization on the statistical approaches analyzed
which indicates a certain robustness of the analysis meth-
ods currently in use in the field.

Conclusion
In this study we have assessed the performance of five dif-
ferent normalization methods using data generated with
the Applied Biosystems Expression Array System. Our
results show a high level of concordance between these
normalization methods. This is true, regardless of whether
signals, variation, site reproducibility or fold change
measurements were interrogated. The same similarity is
observed when TaqMan® assays were used as a reference,
to generate TPR and FDR plots for the various normaliza-
tion methods across the assay range. In addition we also
explored the contribution of several statistical approaches
commonly used in the field on the detection of differen-
tial expression. Little effect is observed by the various nor-

Table 5: Reproducibility of differentially expressed gene lists.

Method Site1&3 Site2&3 Site1&2 Site1&2&3

Quantile 83.3 81.6 79.8 73.58
Median 83.5 78.1 75.5 70.07
Scale 82.5 78.6 75.4 69.87
VSN 82.4 81.7 78.8 72.49
Loess 83.8 81.2 80.8 74.01

Method Site1 Site2 Site3 Common

Quantile 619 548 633 507
Median 612 513 634 480
Scale 618 501 612 473
VSN 620 542 619 507
Loess 622 546 628 498

We use t-test controlling FDR at 5% level within each site to detect significantly differentially expressed genes for normalized data. We compare 
the results for each normalization method, from the 3 sites. First table contains percentage of concordant genes between sites. Second table 
contains the counts of genes differentially expressed.

Reproducibility of differentially expressed gene lists: we use t-test controlling FDR at 5% level within each site to detect significantly differentially expressed genes for normalized dataFigure 10
Reproducibility of differentially expressed gene lists: we use t-test controlling FDR at 5% level within each site to detect significantly 
differentially expressed genes for normalized data. We compare the results from each normalization method, across the 3 
sites.

Quantile Median Scale VSN loess
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malization methods on the statistical approaches
analyzed which indicates a certain robustness of the anal-
ysis methods currently in use in the field, particularly
when used in conjunction with the Applied Biosystems
microarrays.

Methods
RNA samples
Sample definition
Sample A was Universal Human Reference RNA (Strata-
gene) and sample B was human brain total RNA
(Ambion).

Selection of genes for validation by TaqMan assays
A list of 1,297 RefSeqs was selected by the MAQC consor-
tium. Over 90% of these genes were selected from a subset
of 9,442 RefSeq common to the four platforms (Affyme-
trix, Agilent, GE Healthcare and Illumina) used in the
MAQC Pilot-I Study (RNA Sample Pilot), based on anno-
tation information provided by manufacturers in August
2005. This selection ensured that the genes would cover
the entire intensity and fold-change ranges and include
any bias due to RefSeq itself. 1,000 TaqMan gene expres-
sion assays were used in the study that matches with the
MAQC gene list. These 1,000 assays covered 997 genes (3
genes had more than one assay).

Applied Biosystems Expression Array analysis
The Applied Biosystems Human Genome Survey Microar-
ray (P/N 4337467) contains 31,700 60-mer oligonucle-
otide probes representing 29,098 individual human
genes. Digoxigenin-UTP labeled cRNA was generated and
amplified from 1 μg of total RNA from each sample using
Applied Biosystems Chemiluminescent RT-IVT Labeling
Kit v 1.0 (P/N 4340472) according to the manufacturer's
protocol (P/N 4339629). Array hybridization was per-
formed for 16 hrs at 55°C. Chemiluminescence detection,
image acquisition and analysis were performed using
Applied Biosystems Chemiluminescence Detection Kit
(P/N 4342142) and Applied Biosystems 1700 Chemilu-
minescent Microarray Analyzer (P/N 4338036) following
the manufacturer's protocol (P/N 4339629). Images were
auto-gridded and the chemiluminescent signals were
quantified, background subtracted, and finally, spot- and
spatially-normalized using the Applied Biosystems 1700
Chemiluminescent Microarray Analyzer software v 1.1 (P/
N 4336391). Five technical replicates were performed on
each sample, at three different testing sites, for a total of
30 microarrays.

TaqMan® Gene Expression Assay based real-time PCR
TaqMan assays
Each TaqMan Gene Expression Assay consists of two
sequence-specific PCR primers and a TaqMan assay-FAM™
dye-labeled MGB probe. Each TaqMan assay was run in

four replicates for each RNA sample. 10 ng total cDNA (as
total input RNA) in a 10:l final volume was used for each
replicate assay. Assays were run with 2× Universal PCR
Master Mix without UNG (uracil-N-glycosylase) on
Applied Biosystems 7900 Fast Real-Time PCR System
using universal cycling conditions (10 min at 95°C; 15 sec
at 95°C, 1 min 60°C, 40 cycles). The assays and samples
were analyzed across a total of 44–384 well plates.
Robotic methods (Biomek FX) were used for plate setup
and each sample and assay replicate was tracked on a per
well, per plate basis.

Data analysis
Statistical analyses were performed using the open source
and open development software project R together with
the Bioconductor packages ab1700, limma, multtest and
affy [21].

Normalization methods
When running experiments that involve multiple high
density long-oligonucleotide arrays, it is important to
remove sources of variation between arrays of non-biolog-
ical origin. Normalization is a process for reducing this
variation. We present five methods of performing normal-
ization at the probe intensity level.

Scale normalization
was proposed by Yang et all [6] and is further explained by
Smyth and Speed [7]. The idea is to scale the log-ratios to
have the same median-absolute-deviation (MAD) across
arrays.

Global median
The idea is to scale the log-ratios to have the same median
across arrays [5].

Quantile normalization
Quantile normalization was proposed by Bolstad et al. [3]
for Affymetrix-style single-channel arrays and by Yang and
Thorne [4] for two-color cDNA arrays. This method
ensures that the intensities have the same empirical distri-
bution across arrays.

VSN (Variance stabilization normalization)
Based on a function (arsinh) that calibrates for sample-to-
sample variations through shifting and scaling, and trans-
forms the intensities to a scale where the variance is
approximately independent of the mean intensity [8].

Cyclic loess
This approach is based upon the idea of the M versus A
plot, where M is the difference in log expression values
and A is the average of the log expression values, pre-
sented in Dudoit et al. [20]. However, rather than being
applied to two color channels on the same array, as is
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done in the cDNA case, it is applied to probe intensities
from two arrays at a time.

Signal detection analysis
Detection thresholds are defined according to each plat-
form manufacturer's recommendation. For TaqMan Gene
Expression Assays, detection threshold is set as Ct < 35
and Standard deviation (of the 4 technical replicates) <
0.5; for Applied Biosystems Expression Arrays, detection
threshold is set as Signal to Noise ratio (S/N) > 3 and qual-
ity flag < 5000. Detection in each sample was defined as
detectable in 3 out of 4 technical replicates for TaqMan®

assays and 3 out of 5 technical replicates within each site
for microarrays. Using TaqMan® Gene Expression Assays
calls as the reference, contingency tables were constructed
against microarrays, in which True Positives Rates (genes
detectable by both TaqMan® assay and microarrays as a
percentage of all genes detectable by TaqMan assays), are
plotted against TaqMan CT values (Figure 1).

Variability within and between sites for different 
normalization methods for Applied Biosystems Microarray 
System
Coefficient of variation (CV) is used to measure variability
within each site. In Figure 4 we present the dependency
between CV of site 1, with TaqMan CT measurements for
each normalization method and each sample. These
curves represent the lowess approximation of the CV
between the 5 technical replicates of all genes against the
CT measurement.

In order to quantify the variability between sites these nor-
malization methods produce, we perform one factor (site)
ANOVA on all 29,098 genes. In this way we estimate the
percent variability from the total variability (of each gene)
that can be explained from site variability (Figure 5). For
each gene, CVs are plotted against median expression
level measured by quantile normalized data, and lowess
fitting curves are used to approximate the all points gener-
ated from one normalization method.

True positive rates and false discovery rates in detection of 
differentially expressed genes for different normalization 
methods
In order to have a comprehensive understanding of the
performance of these 5 normalization methods, detection
of differentially expressed genes between UHR and Brain
samples is a key issue. Only genes detected in both sam-
ples A and B by TaqMan® assays were used in this compar-
ison. Significantly differentially expressed genes between
samples were defined as p-value < 0.05 based on a stu-
dent's t-test controlling FDR at 5% level (BH). Using calls
from TaqMan® Gene Expression Assays as the reference,
contingency tables were constructed against the different
normalization methods, in which we are taking into con-

siderations both p-value significance and fold change
direction (up or down regulation). Based on this matrix,
the TPR, FPR, FDR and accuracy were calculated for each
normalization method. Results are presented in Table 3. A
more detailed representation of true positive rates and
false discovery rates, as functions of CT measurements are
presented in Figure 8. Genes were first ranked according to
their average value in the tissue comparison. For each bin
of 50 consecutive genes (according to the ranking), we
compare the results from each normalization method
with the ones from TaqMan® Assays. We keep track of up/
down regulation in each platform. The average value of
these 50 genes in the two samples is plotted against TPR
or FDR of the concordance between the two platforms in
detecting differentially expressed genes.
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